Autor Milletari, Fausto
|
|
Documentos disponibles escritos por este autor (2)
Hacer una sugerencia Refinar búsquedaDomain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data / Wang, Qian ; Milletari, Fausto ; Nguyen, Hien V. ; Albarqouni, Shadi ; Cardoso, M. Jorge ; Rieke, Nicola ; Xu, Ziyue ; Kamnitsas, Konstantinos ; Patel, Vishal ; Roysam, Badri ; Jiang, Steve ; Zhou, Kevin ; Luu, Khoa ; Le, Ngan
![]()
Título : Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data : First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings Tipo de documento: documento electrónico Autores: Wang, Qian, ; Milletari, Fausto, ; Nguyen, Hien V., ; Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Rieke, Nicola, ; Xu, Ziyue, ; Kamnitsas, Konstantinos, ; Patel, Vishal, ; Roysam, Badri, ; Jiang, Steve, ; Zhou, Kevin, ; Luu, Khoa, ; Le, Ngan, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XVII, 254 p. 113 ilustraciones, 79 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-33391-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Inteligencia artificial Informática Médica Informática de la Salud Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Primer Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2019, y el Primer Taller Internacional sobre Aprendizaje de Imágenes Médicas con Menos Etiquetas y Datos Imperfectos, MIL3ID 2019, celebrado junto con MICCAI 2019, en Shenzhen, China, en octubre de 2019. DART 2019 aceptó 12 artículos para publicación de 18 presentaciones. Los artículos abordan avances metodológicos e ideas que pueden mejorar la aplicabilidad del aprendizaje automático y los enfoques de aprendizaje profundo en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. MIL3ID aceptó 16 artículos de 43 enviados para publicación, que abordan las mejores prácticas en el aprendizaje de imágenes médicas con escasez de etiquetas e imperfección de datos. . Nota de contenido: DART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Imagesand Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data : First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings [documento electrónico] / Wang, Qian, ; Milletari, Fausto, ; Nguyen, Hien V., ; Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Rieke, Nicola, ; Xu, Ziyue, ; Kamnitsas, Konstantinos, ; Patel, Vishal, ; Roysam, Badri, ; Jiang, Steve, ; Zhou, Kevin, ; Luu, Khoa, ; Le, Ngan, . - 1 ed. . - [s.l.] : Springer, 2019 . - XVII, 254 p. 113 ilustraciones, 79 ilustraciones en color.
ISBN : 978-3-030-33391-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Inteligencia artificial Informática Médica Informática de la Salud Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Primer Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2019, y el Primer Taller Internacional sobre Aprendizaje de Imágenes Médicas con Menos Etiquetas y Datos Imperfectos, MIL3ID 2019, celebrado junto con MICCAI 2019, en Shenzhen, China, en octubre de 2019. DART 2019 aceptó 12 artículos para publicación de 18 presentaciones. Los artículos abordan avances metodológicos e ideas que pueden mejorar la aplicabilidad del aprendizaje automático y los enfoques de aprendizaje profundo en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. MIL3ID aceptó 16 artículos de 43 enviados para publicación, que abordan las mejores prácticas en el aprendizaje de imágenes médicas con escasez de etiquetas e imperfección de datos. . Nota de contenido: DART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Imagesand Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Second MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings / Albarqouni, Shadi ; Bakas, Spyridon ; Kamnitsas, Konstantinos ; Cardoso, M. Jorge ; Landman, Bennett ; Li, Wenqi ; Milletari, Fausto ; Rieke, Nicola ; Roth, Holger ; Xu, Daguang ; Xu, Ziyue
![]()
Título : Second MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings Tipo de documento: documento electrónico Autores: Albarqouni, Shadi, ; Bakas, Spyridon, ; Kamnitsas, Konstantinos, ; Cardoso, M. Jorge, ; Landman, Bennett, ; Li, Wenqi, ; Milletari, Fausto, ; Rieke, Nicola, ; Roth, Holger, ; Xu, Daguang, ; Xu, Ziyue, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2020 Número de páginas: XIII, 212 p. 86 ilustraciones, 67 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-60548-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Ciencias sociales Aprendizaje automático Software de la aplicacion Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Aplicaciones informáticas y de sistemas de información Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Segundo Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2020, y el Primer Taller MICCAI sobre Aprendizaje Distribuido y Colaborativo, DCL 2020, celebrado junto con MICCAI 2020 en octubre de 2020. Se planeó que la conferencia se llevará a cabo en Lima, Perú, pero cambió a un formato en línea debido a la pandemia de Coronavirus. Para DART 2020, se aceptaron 12 artículos completos de 18 presentaciones. Se ocupan de avances metodológicos e ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. Para DCL 2020, se aceptaron los 8 artículos incluidos en este libro de un total de 12 presentaciones. Se centran en la comparación, evaluación y discusión de avances metodológicos e ideas prácticas sobre el aprendizaje automático aplicado a problemas donde los datos no se pueden almacenar en bases de datos centralizadas; donde la privacidad de la información es una prioridad; cuando sea necesario ofrecer garantías sólidas sobre la cantidad y la naturaleza de la información privada que el modelo puede revelar como resultado de la capacitación; y donde es necesario orquestar, gestionar y dirigir grupos de nodos que participan en la misma tarea de aprendizaje. Nota de contenido: a-Unet++:A Data-driven Neural Network Architecture for Medical Image Segmentation -- DAPR-Net: Domain Adaptive Predicting-refinement Network for Retinal Vessel Segmentation -- Augmented Radiology: Patient-wise Feature Transfer Model for Glioma Grading -- Attention-Guided Deep Domain Adaptation for Brain Dementia Identication with Multi-Site Neuroimaging Data -- Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps -- Cross-Modality Segmentation by Self-Supervised Semantic Alignment in Disentangled Content Space -- Semi-supervised Pathology Segmentation with Disentangled Representations -- Domain Generalizer: A Few-shot Meta Learning Framework for Domain Generalization in Medical Imaging -- Parts2Whole: Self-supervised Contrastive Learning via Reconstruction -- Cross-View Label Transfer in Knee MR Segmentation Using Iterative Context Learning -- Continual Class Incremental Learning for CT Thoracic Segmentation -- First U-Net Layers Contain More Domain SpecificInformation Than The Last Ones -- Siloed Federated Learning for Multi-Centric Histopathology Datasets -- On the Fairness of Privacy-Preserving Representations in Medical Applications -- Inverse Distance Aggregation for Federated Learning with Non-IID Data -- Weight Erosion: an Update Aggregation Scheme for Personalized Collaborative Machine Learning -- Federated Gradient Averaging for Multi-Site Training with Momentum-Based Optimizers -- Federated Learning for Breast Density Classification: A Real-World Implementation -- Automated Pancreas Segmentation Using Multi-institutional Collaborative Deep Learning -- Fed-BioMed: A general open-source frontend framework for federated learning in healthcare. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Second MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings [documento electrónico] / Albarqouni, Shadi, ; Bakas, Spyridon, ; Kamnitsas, Konstantinos, ; Cardoso, M. Jorge, ; Landman, Bennett, ; Li, Wenqi, ; Milletari, Fausto, ; Rieke, Nicola, ; Roth, Holger, ; Xu, Daguang, ; Xu, Ziyue, . - 1 ed. . - [s.l.] : Springer, 2020 . - XIII, 212 p. 86 ilustraciones, 67 ilustraciones en color.
ISBN : 978-3-030-60548-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Ciencias sociales Aprendizaje automático Software de la aplicacion Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Aplicaciones informáticas y de sistemas de información Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Segundo Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2020, y el Primer Taller MICCAI sobre Aprendizaje Distribuido y Colaborativo, DCL 2020, celebrado junto con MICCAI 2020 en octubre de 2020. Se planeó que la conferencia se llevará a cabo en Lima, Perú, pero cambió a un formato en línea debido a la pandemia de Coronavirus. Para DART 2020, se aceptaron 12 artículos completos de 18 presentaciones. Se ocupan de avances metodológicos e ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. Para DCL 2020, se aceptaron los 8 artículos incluidos en este libro de un total de 12 presentaciones. Se centran en la comparación, evaluación y discusión de avances metodológicos e ideas prácticas sobre el aprendizaje automático aplicado a problemas donde los datos no se pueden almacenar en bases de datos centralizadas; donde la privacidad de la información es una prioridad; cuando sea necesario ofrecer garantías sólidas sobre la cantidad y la naturaleza de la información privada que el modelo puede revelar como resultado de la capacitación; y donde es necesario orquestar, gestionar y dirigir grupos de nodos que participan en la misma tarea de aprendizaje. Nota de contenido: a-Unet++:A Data-driven Neural Network Architecture for Medical Image Segmentation -- DAPR-Net: Domain Adaptive Predicting-refinement Network for Retinal Vessel Segmentation -- Augmented Radiology: Patient-wise Feature Transfer Model for Glioma Grading -- Attention-Guided Deep Domain Adaptation for Brain Dementia Identication with Multi-Site Neuroimaging Data -- Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps -- Cross-Modality Segmentation by Self-Supervised Semantic Alignment in Disentangled Content Space -- Semi-supervised Pathology Segmentation with Disentangled Representations -- Domain Generalizer: A Few-shot Meta Learning Framework for Domain Generalization in Medical Imaging -- Parts2Whole: Self-supervised Contrastive Learning via Reconstruction -- Cross-View Label Transfer in Knee MR Segmentation Using Iterative Context Learning -- Continual Class Incremental Learning for CT Thoracic Segmentation -- First U-Net Layers Contain More Domain SpecificInformation Than The Last Ones -- Siloed Federated Learning for Multi-Centric Histopathology Datasets -- On the Fairness of Privacy-Preserving Representations in Medical Applications -- Inverse Distance Aggregation for Federated Learning with Non-IID Data -- Weight Erosion: an Update Aggregation Scheme for Personalized Collaborative Machine Learning -- Federated Gradient Averaging for Multi-Site Training with Momentum-Based Optimizers -- Federated Learning for Breast Density Classification: A Real-World Implementation -- Automated Pancreas Segmentation Using Multi-institutional Collaborative Deep Learning -- Fed-BioMed: A general open-source frontend framework for federated learning in healthcare. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i

