| Título : |
Second MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings |
| Tipo de documento: |
documento electrónico |
| Autores: |
Albarqouni, Shadi, ; Bakas, Spyridon, ; Kamnitsas, Konstantinos, ; Cardoso, M. Jorge, ; Landman, Bennett, ; Li, Wenqi, ; Milletari, Fausto, ; Rieke, Nicola, ; Roth, Holger, ; Xu, Daguang, ; Xu, Ziyue, |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2020 |
| Número de páginas: |
XIII, 212 p. 86 ilustraciones, 67 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-3-030-60548-3 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Visión por computador Ciencias sociales Aprendizaje automático Software de la aplicacion Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Aplicaciones informáticas y de sistemas de información |
| Índice Dewey: |
006.37 Visión artificial |
| Resumen: |
Este libro constituye las actas arbitradas del Segundo Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2020, y el Primer Taller MICCAI sobre Aprendizaje Distribuido y Colaborativo, DCL 2020, celebrado junto con MICCAI 2020 en octubre de 2020. Se planeó que la conferencia se llevará a cabo en Lima, Perú, pero cambió a un formato en línea debido a la pandemia de Coronavirus. Para DART 2020, se aceptaron 12 artículos completos de 18 presentaciones. Se ocupan de avances metodológicos e ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. Para DCL 2020, se aceptaron los 8 artículos incluidos en este libro de un total de 12 presentaciones. Se centran en la comparación, evaluación y discusión de avances metodológicos e ideas prácticas sobre el aprendizaje automático aplicado a problemas donde los datos no se pueden almacenar en bases de datos centralizadas; donde la privacidad de la información es una prioridad; cuando sea necesario ofrecer garantías sólidas sobre la cantidad y la naturaleza de la información privada que el modelo puede revelar como resultado de la capacitación; y donde es necesario orquestar, gestionar y dirigir grupos de nodos que participan en la misma tarea de aprendizaje. |
| Nota de contenido: |
a-Unet++:A Data-driven Neural Network Architecture for Medical Image Segmentation -- DAPR-Net: Domain Adaptive Predicting-refinement Network for Retinal Vessel Segmentation -- Augmented Radiology: Patient-wise Feature Transfer Model for Glioma Grading -- Attention-Guided Deep Domain Adaptation for Brain Dementia Identication with Multi-Site Neuroimaging Data -- Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps -- Cross-Modality Segmentation by Self-Supervised Semantic Alignment in Disentangled Content Space -- Semi-supervised Pathology Segmentation with Disentangled Representations -- Domain Generalizer: A Few-shot Meta Learning Framework for Domain Generalization in Medical Imaging -- Parts2Whole: Self-supervised Contrastive Learning via Reconstruction -- Cross-View Label Transfer in Knee MR Segmentation Using Iterative Context Learning -- Continual Class Incremental Learning for CT Thoracic Segmentation -- First U-Net Layers Contain More Domain SpecificInformation Than The Last Ones -- Siloed Federated Learning for Multi-Centric Histopathology Datasets -- On the Fairness of Privacy-Preserving Representations in Medical Applications -- Inverse Distance Aggregation for Federated Learning with Non-IID Data -- Weight Erosion: an Update Aggregation Scheme for Personalized Collaborative Machine Learning -- Federated Gradient Averaging for Multi-Site Training with Momentum-Based Optimizers -- Federated Learning for Breast Density Classification: A Real-World Implementation -- Automated Pancreas Segmentation Using Multi-institutional Collaborative Deep Learning -- Fed-BioMed: A general open-source frontend framework for federated learning in healthcare. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Second MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings [documento electrónico] / Albarqouni, Shadi, ; Bakas, Spyridon, ; Kamnitsas, Konstantinos, ; Cardoso, M. Jorge, ; Landman, Bennett, ; Li, Wenqi, ; Milletari, Fausto, ; Rieke, Nicola, ; Roth, Holger, ; Xu, Daguang, ; Xu, Ziyue, . - 1 ed. . - [s.l.] : Springer, 2020 . - XIII, 212 p. 86 ilustraciones, 67 ilustraciones en color. ISBN : 978-3-030-60548-3 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Visión por computador Ciencias sociales Aprendizaje automático Software de la aplicacion Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Aplicaciones informáticas y de sistemas de información |
| Índice Dewey: |
006.37 Visión artificial |
| Resumen: |
Este libro constituye las actas arbitradas del Segundo Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2020, y el Primer Taller MICCAI sobre Aprendizaje Distribuido y Colaborativo, DCL 2020, celebrado junto con MICCAI 2020 en octubre de 2020. Se planeó que la conferencia se llevará a cabo en Lima, Perú, pero cambió a un formato en línea debido a la pandemia de Coronavirus. Para DART 2020, se aceptaron 12 artículos completos de 18 presentaciones. Se ocupan de avances metodológicos e ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. Para DCL 2020, se aceptaron los 8 artículos incluidos en este libro de un total de 12 presentaciones. Se centran en la comparación, evaluación y discusión de avances metodológicos e ideas prácticas sobre el aprendizaje automático aplicado a problemas donde los datos no se pueden almacenar en bases de datos centralizadas; donde la privacidad de la información es una prioridad; cuando sea necesario ofrecer garantías sólidas sobre la cantidad y la naturaleza de la información privada que el modelo puede revelar como resultado de la capacitación; y donde es necesario orquestar, gestionar y dirigir grupos de nodos que participan en la misma tarea de aprendizaje. |
| Nota de contenido: |
a-Unet++:A Data-driven Neural Network Architecture for Medical Image Segmentation -- DAPR-Net: Domain Adaptive Predicting-refinement Network for Retinal Vessel Segmentation -- Augmented Radiology: Patient-wise Feature Transfer Model for Glioma Grading -- Attention-Guided Deep Domain Adaptation for Brain Dementia Identication with Multi-Site Neuroimaging Data -- Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps -- Cross-Modality Segmentation by Self-Supervised Semantic Alignment in Disentangled Content Space -- Semi-supervised Pathology Segmentation with Disentangled Representations -- Domain Generalizer: A Few-shot Meta Learning Framework for Domain Generalization in Medical Imaging -- Parts2Whole: Self-supervised Contrastive Learning via Reconstruction -- Cross-View Label Transfer in Knee MR Segmentation Using Iterative Context Learning -- Continual Class Incremental Learning for CT Thoracic Segmentation -- First U-Net Layers Contain More Domain SpecificInformation Than The Last Ones -- Siloed Federated Learning for Multi-Centric Histopathology Datasets -- On the Fairness of Privacy-Preserving Representations in Medical Applications -- Inverse Distance Aggregation for Federated Learning with Non-IID Data -- Weight Erosion: an Update Aggregation Scheme for Personalized Collaborative Machine Learning -- Federated Gradient Averaging for Multi-Site Training with Momentum-Based Optimizers -- Federated Learning for Breast Density Classification: A Real-World Implementation -- Automated Pancreas Segmentation Using Multi-institutional Collaborative Deep Learning -- Fed-BioMed: A general open-source frontend framework for federated learning in healthcare. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |