Información del autor
Autor Lu, Le |
Documentos disponibles escritos por este autor (2)
Crear una solicitud de compra Refinar búsqueda
Deep Learning and Convolutional Neural Networks for Medical Image Computing / Lu, Le ; Zheng, Yefeng ; Carneiro, Gustavo ; Yang, Lin
TÃtulo : Deep Learning and Convolutional Neural Networks for Medical Image Computing : Precision Medicine, High Performance and Large-Scale Datasets Tipo de documento: documento electrónico Autores: Lu, Le, ; Zheng, Yefeng, ; Carneiro, Gustavo, ; Yang, Lin, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2017 Número de páginas: XIII, 326 p. 117 ilustraciones, 100 ilustraciones en color. ISBN/ISSN/DL: 978-3-319-42999-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador Inteligencia artificial Redes neuronales (Informática) RadiologÃa Modelos matemáticos de procesos cognitivos y redes neuronales Clasificación: 006.37 Resumen: Este oportuno texto/referencia presenta una revisión detallada del estado del arte en enfoques de aprendizaje profundo para la detección y segmentación de objetos semánticos en la computación de imágenes médicas y la extracción de bases de datos de radiologÃa a gran escala. Se presta especial atención a la aplicación de redes neuronales convolucionales, con la teorÃa respaldada por ejemplos prácticos. Temas y caracterÃsticas: Destaca cómo el uso de redes neuronales profundas puede abordar nuevas preguntas y protocolos, asà como mejorar los desafÃos existentes en la computación de imágenes médicas. Analiza la reveladora experiencia de investigación y las opiniones del Dr. Ronald M. Summers en la computadora basada en imágenes médicas. Diagnóstico asistido y su interacción con el aprendizaje profundo Presenta una revisión exhaustiva de las últimas investigaciones y literatura sobre aprendizaje profundo para el análisis de imágenes médicas. Describe una variedad de métodos diferentes que utilizan el aprendizaje profundo para tareas de detección de objetos o puntos de referencia en imágenes médicas 2D y 3D. Examina una variada selección de técnicas para la segmentación semántica utilizando principios de aprendizaje profundo en imágenes médicas. Presenta un enfoque novedoso para la extracción profunda de texto e imágenes entrelazadas en una base de datos de imágenes de radiologÃa a gran escala para la interpretación automatizada de imágenes. Este volumen pionero resultará invaluable para investigadores y estudiantes de posgrado. que deseen emplear modelos y representaciones de redes neuronales profundas para análisis de imágenes médicas y aplicaciones de imágenes médicas. El Dr. Le Lu es cientÃfico del Departamento de RadiologÃa y Ciencias de la Imagen del Centro ClÃnico de los Institutos Nacionales de Salud, Bethesda, MD, EE. UU. El Dr. Yefeng Zheng es cientÃfico senior del Siemens Healthcare Technology Center, Princeton, Nueva Jersey, EE. UU. Dr. Gustavo Carneiro es profesor asociado en la Facultad de Ciencias de la Computación de la Universidad de Adelaida, Australia. El Dr. Lin Yang es profesor asociado en el Departamento de IngenierÃa Biomédica de la Universidad de Florida, Gainesville, FL, EE. UU. Nota de contenido: Part I: Review -- Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective -- Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis -- Part II: Detection and Localization -- Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation -- Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning -- Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set -- Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers -- Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning -- Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging -- Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel -- Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition -- Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging -- Part III: Segmentation -- Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference -- Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms -- Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context -- Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders -- Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling -- Part IV: Big Dataset and Text-Image Deep Mining -- Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale RadiologyImage Database. Tipo de medio : Computadora Summary : This timely text/reference presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Topics and features: Highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing Discusses the insightful research experience and views of Dr. Ronald M. Summers in medical imaging-based computer-aided diagnosis and its interaction with deep learning Presents a comprehensive review of the latest research and literature on deep learning for medical image analysis Describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging Examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging Introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database for automated image interpretation This pioneering volume will prove invaluable to researchers and graduate students wishing to employ deep neural network models and representations for medical image analysis and medical imaging applications. Dr. Le Lu is a Staff Scientist in the Radiology and Imaging Sciences Department of the National Institutes of Health Clinical Center, Bethesda, MD, USA. Dr. Yefeng Zheng is a Senior Staff Scientist at Siemens Healthcare Technology Center, Princeton, NJ, USA. Dr. Gustavo Carneiro is an Associate Professor in the School of Computer Science at The University of Adelaide, Australia. Dr. Lin Yang is an Associate Professor in the Department ofBiomedical Engineering at the University of Florida, Gainesville, FL, USA. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Deep Learning and Convolutional Neural Networks for Medical Image Computing : Precision Medicine, High Performance and Large-Scale Datasets [documento electrónico] / Lu, Le, ; Zheng, Yefeng, ; Carneiro, Gustavo, ; Yang, Lin, . - 1 ed. . - [s.l.] : Springer, 2017 . - XIII, 326 p. 117 ilustraciones, 100 ilustraciones en color.
ISBN : 978-3-319-42999-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador Inteligencia artificial Redes neuronales (Informática) RadiologÃa Modelos matemáticos de procesos cognitivos y redes neuronales Clasificación: 006.37 Resumen: Este oportuno texto/referencia presenta una revisión detallada del estado del arte en enfoques de aprendizaje profundo para la detección y segmentación de objetos semánticos en la computación de imágenes médicas y la extracción de bases de datos de radiologÃa a gran escala. Se presta especial atención a la aplicación de redes neuronales convolucionales, con la teorÃa respaldada por ejemplos prácticos. Temas y caracterÃsticas: Destaca cómo el uso de redes neuronales profundas puede abordar nuevas preguntas y protocolos, asà como mejorar los desafÃos existentes en la computación de imágenes médicas. Analiza la reveladora experiencia de investigación y las opiniones del Dr. Ronald M. Summers en la computadora basada en imágenes médicas. Diagnóstico asistido y su interacción con el aprendizaje profundo Presenta una revisión exhaustiva de las últimas investigaciones y literatura sobre aprendizaje profundo para el análisis de imágenes médicas. Describe una variedad de métodos diferentes que utilizan el aprendizaje profundo para tareas de detección de objetos o puntos de referencia en imágenes médicas 2D y 3D. Examina una variada selección de técnicas para la segmentación semántica utilizando principios de aprendizaje profundo en imágenes médicas. Presenta un enfoque novedoso para la extracción profunda de texto e imágenes entrelazadas en una base de datos de imágenes de radiologÃa a gran escala para la interpretación automatizada de imágenes. Este volumen pionero resultará invaluable para investigadores y estudiantes de posgrado. que deseen emplear modelos y representaciones de redes neuronales profundas para análisis de imágenes médicas y aplicaciones de imágenes médicas. El Dr. Le Lu es cientÃfico del Departamento de RadiologÃa y Ciencias de la Imagen del Centro ClÃnico de los Institutos Nacionales de Salud, Bethesda, MD, EE. UU. El Dr. Yefeng Zheng es cientÃfico senior del Siemens Healthcare Technology Center, Princeton, Nueva Jersey, EE. UU. Dr. Gustavo Carneiro es profesor asociado en la Facultad de Ciencias de la Computación de la Universidad de Adelaida, Australia. El Dr. Lin Yang es profesor asociado en el Departamento de IngenierÃa Biomédica de la Universidad de Florida, Gainesville, FL, EE. UU. Nota de contenido: Part I: Review -- Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective -- Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis -- Part II: Detection and Localization -- Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation -- Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning -- Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set -- Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers -- Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning -- Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging -- Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel -- Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition -- Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging -- Part III: Segmentation -- Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference -- Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms -- Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context -- Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders -- Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling -- Part IV: Big Dataset and Text-Image Deep Mining -- Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale RadiologyImage Database. Tipo de medio : Computadora Summary : This timely text/reference presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Topics and features: Highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing Discusses the insightful research experience and views of Dr. Ronald M. Summers in medical imaging-based computer-aided diagnosis and its interaction with deep learning Presents a comprehensive review of the latest research and literature on deep learning for medical image analysis Describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging Examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging Introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database for automated image interpretation This pioneering volume will prove invaluable to researchers and graduate students wishing to employ deep neural network models and representations for medical image analysis and medical imaging applications. Dr. Le Lu is a Staff Scientist in the Radiology and Imaging Sciences Department of the National Institutes of Health Clinical Center, Bethesda, MD, USA. Dr. Yefeng Zheng is a Senior Staff Scientist at Siemens Healthcare Technology Center, Princeton, NJ, USA. Dr. Gustavo Carneiro is an Associate Professor in the School of Computer Science at The University of Adelaide, Australia. Dr. Lin Yang is an Associate Professor in the Department ofBiomedical Engineering at the University of Florida, Gainesville, FL, USA. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics / Lu, Le ; Wang, Xiaosong ; Carneiro, Gustavo ; Yang, Lin
TÃtulo : Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics Tipo de documento: documento electrónico Autores: Lu, Le, ; Wang, Xiaosong, ; Carneiro, Gustavo, ; Yang, Lin, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XI, 461 p. 177 ilustraciones, 156 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-13969-8 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador RadiologÃa Inteligencia artificial Redes neuronales (Informática) Modelos matemáticos de procesos cognitivos y redes neuronales Clasificación: 006.37 Resumen: Este libro revisa el estado del arte en enfoques de aprendizaje profundo para la detección robusta de enfermedades de alto rendimiento, la segmentación sólida y precisa de órganos en la computación de imágenes médicas (modalidades de imágenes radiológicas y patológicas) y la construcción y extracción de bases de datos de radiologÃa a gran escala. Se centra particularmente en la aplicación de redes neuronales convolucionales y en redes neuronales recurrentes como LSTM, utilizando numerosos ejemplos prácticos para complementar la teorÃa. Las caracterÃsticas principales del libro son las siguientes: destaca cómo se pueden utilizar las redes neuronales profundas para abordar nuevas preguntas y protocolos, y para abordar los desafÃos actuales en la informática de imágenes médicas; presenta una revisión exhaustiva de las últimas investigaciones y literatura; y describe una variedad de métodos diferentes que emplean aprendizaje profundo para tareas de detección de objetos o puntos de referencia en imágenes médicas 2D y 3D. Además, el libro examina una amplia selección de técnicas de segmentación semántica utilizando principios de aprendizaje profundo en imágenes médicas; presenta un enfoque novedoso para la incrustación profunda de texto e imágenes para una base de datos de imágenes de rayos X de tórax a gran escala; y analiza cómo se pueden utilizar los gráficos relacionales de aprendizaje profundo para organizar una colección considerable de hallazgos radiológicos de la práctica clÃnica real, permitiendo la recuperación basada en similitudes semánticas. El lector previsto de este libro editado es un ingeniero profesional, cientÃfico o estudiante de posgrado que sea capaz de comprender conceptos generales de procesamiento de imágenes, visión por computadora y análisis de imágenes médicas. Pueden aplicar principios matemáticos y de informática en prácticas de resolución de problemas. Puede ser necesario tener un cierto nivel de familiaridad con una serie de temas más avanzados: formación y mejora de imágenes, comprensión de imágenes, reconocimiento visual en aplicaciones médicas, aprendizaje estadÃstico, redes neuronales profundas, predicción estructurada y segmentación de imágenes. Nota de contenido: Chapter 1. Clinical Report Guided Multi-Sieving Deep Learning for Retinal Microaneurysm Detection -- Chapter 2. Optic Disc and Cup Segmentation Based on Multi-label Deep Network for Fundus Glaucoma Screening -- Chapter 3. Thoracic Disease Identification and Localization with Limited Supervision -- Chapter 4. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases -- Chapter 5. TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays -- Chapter 6. Deep Lesion Graph in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database -- Chapter 7. Deep Reinforcement Learning based Attention to Detect Breast Lesions from DCE-MRI -- Chapter 8. Deep Convolutional Hashing for Low Dimensional Binary Embedding of Histopathological Images -- Chapter 9. Pancreas Segmentation in CT and MRI Images via Domain Specific Network Designing and Recurrent Neural Contextual Learning -- Chapter 10. Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation -- Chapter 11. Pancreas -- Chapter 12. Multi-Organ -- Chapter 13. Convolutional Invasion and Expansion Networks for Tumor Growth Prediction -- Chapter 14. Cross-Modality Synthesis in Magnetic Resonance Imaging -- Chapter 15. Image Quality Assessment for Population Cardiac MRI -- Chapter 16. Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss -- Chapter 17. Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss -- Chapter 18. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization -- Chapter 19. 3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes -- Chapter 20. Multi-Agent Learning for Robust Image Registration -- Chapter 21. Deep Learning in Magnetic Resonance Imaging of Cardiac Function -- Chapter 22. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization -- Chapter 23. Deep Learning on Functional Connectivity of Brain: Are We There Yet?. Tipo de medio : Computadora Summary : This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval. The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics [documento electrónico] / Lu, Le, ; Wang, Xiaosong, ; Carneiro, Gustavo, ; Yang, Lin, . - 1 ed. . - [s.l.] : Springer, 2019 . - XI, 461 p. 177 ilustraciones, 156 ilustraciones en color.
ISBN : 978-3-030-13969-8
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador RadiologÃa Inteligencia artificial Redes neuronales (Informática) Modelos matemáticos de procesos cognitivos y redes neuronales Clasificación: 006.37 Resumen: Este libro revisa el estado del arte en enfoques de aprendizaje profundo para la detección robusta de enfermedades de alto rendimiento, la segmentación sólida y precisa de órganos en la computación de imágenes médicas (modalidades de imágenes radiológicas y patológicas) y la construcción y extracción de bases de datos de radiologÃa a gran escala. Se centra particularmente en la aplicación de redes neuronales convolucionales y en redes neuronales recurrentes como LSTM, utilizando numerosos ejemplos prácticos para complementar la teorÃa. Las caracterÃsticas principales del libro son las siguientes: destaca cómo se pueden utilizar las redes neuronales profundas para abordar nuevas preguntas y protocolos, y para abordar los desafÃos actuales en la informática de imágenes médicas; presenta una revisión exhaustiva de las últimas investigaciones y literatura; y describe una variedad de métodos diferentes que emplean aprendizaje profundo para tareas de detección de objetos o puntos de referencia en imágenes médicas 2D y 3D. Además, el libro examina una amplia selección de técnicas de segmentación semántica utilizando principios de aprendizaje profundo en imágenes médicas; presenta un enfoque novedoso para la incrustación profunda de texto e imágenes para una base de datos de imágenes de rayos X de tórax a gran escala; y analiza cómo se pueden utilizar los gráficos relacionales de aprendizaje profundo para organizar una colección considerable de hallazgos radiológicos de la práctica clÃnica real, permitiendo la recuperación basada en similitudes semánticas. El lector previsto de este libro editado es un ingeniero profesional, cientÃfico o estudiante de posgrado que sea capaz de comprender conceptos generales de procesamiento de imágenes, visión por computadora y análisis de imágenes médicas. Pueden aplicar principios matemáticos y de informática en prácticas de resolución de problemas. Puede ser necesario tener un cierto nivel de familiaridad con una serie de temas más avanzados: formación y mejora de imágenes, comprensión de imágenes, reconocimiento visual en aplicaciones médicas, aprendizaje estadÃstico, redes neuronales profundas, predicción estructurada y segmentación de imágenes. Nota de contenido: Chapter 1. Clinical Report Guided Multi-Sieving Deep Learning for Retinal Microaneurysm Detection -- Chapter 2. Optic Disc and Cup Segmentation Based on Multi-label Deep Network for Fundus Glaucoma Screening -- Chapter 3. Thoracic Disease Identification and Localization with Limited Supervision -- Chapter 4. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases -- Chapter 5. TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays -- Chapter 6. Deep Lesion Graph in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database -- Chapter 7. Deep Reinforcement Learning based Attention to Detect Breast Lesions from DCE-MRI -- Chapter 8. Deep Convolutional Hashing for Low Dimensional Binary Embedding of Histopathological Images -- Chapter 9. Pancreas Segmentation in CT and MRI Images via Domain Specific Network Designing and Recurrent Neural Contextual Learning -- Chapter 10. Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation -- Chapter 11. Pancreas -- Chapter 12. Multi-Organ -- Chapter 13. Convolutional Invasion and Expansion Networks for Tumor Growth Prediction -- Chapter 14. Cross-Modality Synthesis in Magnetic Resonance Imaging -- Chapter 15. Image Quality Assessment for Population Cardiac MRI -- Chapter 16. Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss -- Chapter 17. Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss -- Chapter 18. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization -- Chapter 19. 3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes -- Chapter 20. Multi-Agent Learning for Robust Image Registration -- Chapter 21. Deep Learning in Magnetic Resonance Imaging of Cardiac Function -- Chapter 22. Automatic Vertebra Labeling in Large-Scale Medical Images using Deep Image-to-Image Network with Message Passing and Sparsity Regularization -- Chapter 23. Deep Learning on Functional Connectivity of Brain: Are We There Yet?. Tipo de medio : Computadora Summary : This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval. The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]