| Título : |
Convexity and Concentration |
| Tipo de documento: |
documento electrónico |
| Autores: |
Carlen, Eric, ; Madiman, Mokshay, ; Werner, Elisabeth M., |
| Mención de edición: |
1 ed. |
| Editorial: |
New York, N.Y. [USA] : Springer |
| Fecha de publicación: |
2017 |
| Número de páginas: |
X, 626 p. 6 ilustraciones, 5 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-1-4939-7005-6 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
geometría convexa Geometría discreta Probabilidades Geometría convexa y discreta Teoría de probabilidad |
| Índice Dewey: |
516 Geometría |
| Resumen: |
Este volumen presenta algunos de los temas de investigación discutidos en el Programa Temático Anual 2014-2015 Estructuras Discretas: Análisis y Aplicaciones en el Instituto de Matemáticas y sus Aplicaciones durante la primavera de 2015, donde el análisis geométrico, la geometría convexa y los fenómenos de concentración fueron el foco. Los principales expertos han escrito encuestas sobre problemas de investigación, lo que hace que los resultados de última generación estén más convenientemente disponibles y estén ampliamente disponibles. El volumen está organizado en dos partes. La Parte I contiene aquellas contribuciones que se centran principalmente en problemas motivados por la teoría de la probabilidad, mientras que la Parte II contiene aquellas contribuciones que se centran principalmente en problemas motivados por la geometría convexa y el análisis geométrico. Este libro será de utilidad para quienes investigan directamente la geometría convexa, el análisis geométrico y la probabilidad o aplican dichos métodos en otros campos. |
| Nota de contenido: |
Part I: Probability and Concentration -- Interpolation of Probability Measures on Graphs -- Entropy and Thinning of Discrete Random Variables -- Structured Random Matrices -- Rates of Convergence for Empirical Spectral Measures: A Soft Approach -- Concentration of MEasure without Independence: A Unified Approach via the Martingale Method -- Strong Data-Processing Inequalities for Channels and Bayesian Networks -- An Application of a Functional Inequality to Quasi Invariance in Infinite Dimensions -- Borell's Formula on a Riemannian Manifold and Applications -- Fourth Moments and Products: Unified Estimates -- Asymptotic Expansions for Products of Characteristic Functions Under Moment Assumptions of non-Integer Orders -- Part II: Convexity and Concentration for Sets and Functions -- Non-Standard Constructions in Convex Geometry: Geometric Means of Convex Bodies -- Randomized Isoperimetric Inequalities -- Forward and Reverse Entropy Power Inequalities in Convex Geometry -- Log-Concave Functions -- On Some Problems Concerning Log-Concave Random Vectors -- Stability Results for Some Geometric Inequalities and their Functional Versions -- Measures of Sections of Convex Bodies -- On Isoperimetric Functions of Probability Measures Having Log-Concave Densities with Respect to the Standard Normal Law -- Counting Integer Points in Higher-Dimensional Polytopes -- The Chain Rule Operator Equation for Polynomials and Entire Functions. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Convexity and Concentration [documento electrónico] / Carlen, Eric, ; Madiman, Mokshay, ; Werner, Elisabeth M., . - 1 ed. . - New York, N.Y. [USA] : Springer, 2017 . - X, 626 p. 6 ilustraciones, 5 ilustraciones en color. ISBN : 978-1-4939-7005-6 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
geometría convexa Geometría discreta Probabilidades Geometría convexa y discreta Teoría de probabilidad |
| Índice Dewey: |
516 Geometría |
| Resumen: |
Este volumen presenta algunos de los temas de investigación discutidos en el Programa Temático Anual 2014-2015 Estructuras Discretas: Análisis y Aplicaciones en el Instituto de Matemáticas y sus Aplicaciones durante la primavera de 2015, donde el análisis geométrico, la geometría convexa y los fenómenos de concentración fueron el foco. Los principales expertos han escrito encuestas sobre problemas de investigación, lo que hace que los resultados de última generación estén más convenientemente disponibles y estén ampliamente disponibles. El volumen está organizado en dos partes. La Parte I contiene aquellas contribuciones que se centran principalmente en problemas motivados por la teoría de la probabilidad, mientras que la Parte II contiene aquellas contribuciones que se centran principalmente en problemas motivados por la geometría convexa y el análisis geométrico. Este libro será de utilidad para quienes investigan directamente la geometría convexa, el análisis geométrico y la probabilidad o aplican dichos métodos en otros campos. |
| Nota de contenido: |
Part I: Probability and Concentration -- Interpolation of Probability Measures on Graphs -- Entropy and Thinning of Discrete Random Variables -- Structured Random Matrices -- Rates of Convergence for Empirical Spectral Measures: A Soft Approach -- Concentration of MEasure without Independence: A Unified Approach via the Martingale Method -- Strong Data-Processing Inequalities for Channels and Bayesian Networks -- An Application of a Functional Inequality to Quasi Invariance in Infinite Dimensions -- Borell's Formula on a Riemannian Manifold and Applications -- Fourth Moments and Products: Unified Estimates -- Asymptotic Expansions for Products of Characteristic Functions Under Moment Assumptions of non-Integer Orders -- Part II: Convexity and Concentration for Sets and Functions -- Non-Standard Constructions in Convex Geometry: Geometric Means of Convex Bodies -- Randomized Isoperimetric Inequalities -- Forward and Reverse Entropy Power Inequalities in Convex Geometry -- Log-Concave Functions -- On Some Problems Concerning Log-Concave Random Vectors -- Stability Results for Some Geometric Inequalities and their Functional Versions -- Measures of Sections of Convex Bodies -- On Isoperimetric Functions of Probability Measures Having Log-Concave Densities with Respect to the Standard Normal Law -- Counting Integer Points in Higher-Dimensional Polytopes -- The Chain Rule Operator Equation for Polynomials and Entire Functions. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |