TÃtulo : |
Computerized Adaptive and Multistage Testing with R : Using Packages catR and mstR |
Tipo de documento: |
documento electrónico |
Autores: |
Magis, David, ; Yan, Duanli, ; von Davier, Alina A., |
Mención de edición: |
1 ed. |
Editorial: |
[s.l.] : Springer |
Fecha de publicación: |
2017 |
Número de páginas: |
XX, 171 p. 20 ilustraciones |
ISBN/ISSN/DL: |
978-3-319-69218-0 |
Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
Idioma : |
Inglés (eng) |
Palabras clave: |
EstadÃsticas Pruebas y mediciones educativas. PsicometrÃa Ciencias sociales PsicologÃa Educacional TeorÃa y métodos estadÃsticos. Evaluación y pruebas EstadÃstica en Ciencias Sociales Humanidades Derecho Educación Ciencias del Comportamiento PolÃticas Públicas EstadÃstica y Computación |
Clasificación: |
519.5 |
Resumen: |
El objetivo de esta guÃa y manual es proporcionar una descripción práctica y breve de la teorÃa sobre pruebas adaptativas computarizadas (CAT) y pruebas multietapa (MST) e ilustrar las metodologÃas y aplicaciones que utilizan el lenguaje de código abierto R y varios ejemplos de datos. La implementación se basa en los paquetes R catR y mstR que ya han sido desarrollados o están siendo desarrollados por el primer autor (con el equipo) y que incluyen algunos de los algoritmos de investigación más recientes sobre el tema. El libro cubre muchos temas junto con el código R: los conceptos básicos de R, descripción teórica de CAT y MST, diseños CAT, metodologÃas de ensamblaje CAT, simulaciones CAT, paquete catR, aplicaciones CAT, diseños MST, metodologÃas MST basadas en IRT, árbol MetodologÃas MST basadas en MST, paquete mstR y aplicaciones MST. La CAT se ha utilizado en muchas evaluaciones a gran escala en las últimas décadas y la MST se ha vuelto muy popular en los últimos años. El lenguaje de código abierto R también se ha convertido en una de las herramientas más útiles para aplicaciones en casi todos los campos, incluidos los empresariales y la educación. Aunque es muy útil y popular, R es un lenguaje difÃcil de aprender, con una curva de aprendizaje pronunciada. Dada la necesidad obvia de CAT y MST, pero con la compleja implementación, es muy difÃcil para los usuarios simular o implementar CAT y MST. Hasta este manual, no existÃa ningún libro para que los usuarios diseñaran y utilizaran CAT y MST fácilmente y sin gastos; es decir, utilizando el software gratuito R. Todos los ejemplos e ilustraciones se generan utilizando scripts predefinidos en lenguaje R, disponibles para descarga gratuita desde el sitio web del libro. Proporciona descripciones exhaustivas de los procesos CAT y MST en un entorno R. GuÃa a los usuarios para simular e implementar CAT y MST usando R para sus aplicaciones. Resume los últimos desarrollos y desafÃos de los paquetes catR y mstR. Proporciona los paquetes R catR y mstR e ilustra a los usuarios cómo hacer CAT. y simulaciones e implementaciones de MST utilizando R David Magis, PhD, es investigador asociado del "Fonds de la Recherche Scientifique – FNRS" en el Departamento de Educación de la Universidad de Lieja, Bélgica. Su especialización son los métodos estadÃsticos en psicometrÃa, con especial interés en la teorÃa de la respuesta al Ãtem, el funcionamiento diferencial de los Ãtems y las pruebas adaptativas computarizadas. Sus intereses de investigación incluyen tanto el desarrollo teórico y metodológico como la implementación y difusión de código abierto en R. Es el principal desarrollador y mantenedor de los paquetes catR y mstR, entre otros. Duanli Yan, PhD, es Gerente de Análisis de Datos e Investigación Computacional para el grupo de Puntuación Automatizada en la división de Investigación y Desarrollo del Servicio de Pruebas Educativas (ETS). También es profesora adjunta en la Universidad de Rutgers. El Dr. Yan ha sido el coordinador estadÃstico de la prueba EXADEPâ„¢ y los programas institucionales TOEIC®, un cientÃfico de desarrollo para aplicaciones de investigación innovadoras y un psicometrista para varios programas operativos. El Dr. Yan recibió muchos premios,incluido el Premio Presidencial ETS 2011, el premio NCME Brenda Lyod 2013 y el Premio IACAT Early Career Award 2015. Es coeditora de Computerized Multistage Testing: Theory and Applications y coautora de Bayesian Networks in Educational Assessment. Alina A. von Davier, PhD, es directora senior de investigación del Centro de Investigación en PsicometrÃa Computacional del Educational Testing Service (ETS) y profesora adjunta en la Universidad de Fordham. En ETS dirige el Centro de Investigación en PsicometrÃa Computacional, donde es responsable de desarrollar un equipo de expertos y una agenda de investigación psicométrica en apoyo de las evaluaciones de próxima generación. La psicometrÃa computacional, que incluye técnicas de aprendizaje automático y minerÃa de datos, métodos de inferencia bayesianos, procesos estocásticos y modelos psicométricos, son el principal conjunto de herramientas empleadas en su trabajo actual. También trabaja con modelos psicométricos aplicados a las pruebas educativas: métodos de equiparación de puntuaciones de pruebas, modelos de teorÃa de respuesta al Ãtem y pruebas adaptativas. . |
Nota de contenido: |
Foreword -- Preface -- Ch 1 Overview of Adaptive Testing -- Ch 2 An Overview of Item Response Theory -- Part 1 Item-Level Computerized Adaptive Testing -- Ch 3 An Overview of Computerized Adaptive Testing -- Ch 4 Simulations of Computerized Adaptive Tests -- Ch 5 Examples of Simulations using catR -- Part 2 Computerized Multistage Testing -- Ch 6 An Overview of Computerized Multistage testing -- Ch 7 Simulations of Computerized Multistage Tests -- Ch 8 Examples of Simulations using mstR -- Index. |
Tipo de medio : |
Computadora |
Summary : |
The goal of this guide and manual is to provide a practical and brief overview of the theory on computerized adaptive testing (CAT) and multistage testing (MST) and to illustrate the methodologies and applications using R open source language and several data examples. Implementation relies on the R packages catR and mstR that have been already or are being developed by the first author (with the team) and that include some of the newest research algorithms on the topic. The book covers many topics along with the R-code: the basics of R, theoretical overview of CAT and MST, CAT designs, CAT assembly methodologies, CAT simulations, catR package, CAT applications, MST designs, IRT-based MST methodologies, tree-based MST methodologies, mstR package, and MST applications. CAT has been used in many large-scale assessments over recent decades, and MST has become very popular in recent years. R open source language also has become one of themost useful tools for applications in almost all fields, including business and education. Though very useful and popular, R is a difficult language to learn, with a steep learning curve. Given the obvious need for but with the complex implementation of CAT and MST, it is very difficult for users to simulate or implement CAT and MST. Until this manual, there has been no book for users to design and use CAT and MST easily and without expense; i.e., by using the free R software. All examples and illustrations are generated using predefined scripts in R language, available for free download from the book's website. Provides exhaustive descriptions of CAT and MST processes in an R environment Guides users to simulate and implement CAT and MST using R for their applications Summarizes the latest developments and challenges of packages catR and mstR Provides R packages catR and mstR and illustrates tousers how to do CAT and MST simulations and implementations using R David Magis, PhD, is Research Associate of the "Fonds de la Recherche Scientifique – FNRS" at the Department of Education, University of Liège, Belgium. His specialization is statistical methods in psychometrics, with special interest in item response theory, differential item functioning and computerized adaptive testing. His research interests include both theoretical and methodological development as well as open source implementation and dissemination in R. He is the main developer and maintainer of the packages catR and mstR, among others. Duanli Yan, PhD, is Manager of Data Analysis and Computational Research for Automated Scoring group in the Research and Development division at the Educational Testing Service (ETS). She is also an Adjunct Professor at Rutgers University. Dr. Yan has been the statistical coordinator for the EXADEP™ test,and the TOEIC® Institutional programs, a Development Scientist for innovative research applications, and a Psychometrician for several operational programs. Dr. Yan received many awards, including the 2011 ETS Presidential Award, the 2013 NCME Brenda Lyod award, and the 2015 IACAT Early Career Award. She is a co-editor for Computerized Multistage Testing: Theory and Applications and a co-author for Bayesian Networks in Educational Assessment. Alina A. von Davier, PhD, is Senior Research Director of the Computational Psychometrics Research Center at Educational Testing Service (ETS) and an Adjunct Professor at Fordham University. At ETS she leads the Computational Psychometrics Research Center, where she is responsible for developing a team of experts and a psychometric research agenda in support of next generation assessments. Computational psychometrics, which include machine learning and data mining techniques, Bayesian inferencemethods, stochastic processes and psychometric models are the main set of tools employed in her current work. She also works with psychometric models applied to educational testing: test score equating methods, item response theory models, and adaptive testing. . |
Enlace de acceso : |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
Computerized Adaptive and Multistage Testing with R : Using Packages catR and mstR [documento electrónico] / Magis, David, ; Yan, Duanli, ; von Davier, Alina A., . - 1 ed. . - [s.l.] : Springer, 2017 . - XX, 171 p. 20 ilustraciones. ISBN : 978-3-319-69218-0 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés ( eng)
Palabras clave: |
EstadÃsticas Pruebas y mediciones educativas. PsicometrÃa Ciencias sociales PsicologÃa Educacional TeorÃa y métodos estadÃsticos. Evaluación y pruebas EstadÃstica en Ciencias Sociales Humanidades Derecho Educación Ciencias del Comportamiento PolÃticas Públicas EstadÃstica y Computación |
Clasificación: |
519.5 |
Resumen: |
El objetivo de esta guÃa y manual es proporcionar una descripción práctica y breve de la teorÃa sobre pruebas adaptativas computarizadas (CAT) y pruebas multietapa (MST) e ilustrar las metodologÃas y aplicaciones que utilizan el lenguaje de código abierto R y varios ejemplos de datos. La implementación se basa en los paquetes R catR y mstR que ya han sido desarrollados o están siendo desarrollados por el primer autor (con el equipo) y que incluyen algunos de los algoritmos de investigación más recientes sobre el tema. El libro cubre muchos temas junto con el código R: los conceptos básicos de R, descripción teórica de CAT y MST, diseños CAT, metodologÃas de ensamblaje CAT, simulaciones CAT, paquete catR, aplicaciones CAT, diseños MST, metodologÃas MST basadas en IRT, árbol MetodologÃas MST basadas en MST, paquete mstR y aplicaciones MST. La CAT se ha utilizado en muchas evaluaciones a gran escala en las últimas décadas y la MST se ha vuelto muy popular en los últimos años. El lenguaje de código abierto R también se ha convertido en una de las herramientas más útiles para aplicaciones en casi todos los campos, incluidos los empresariales y la educación. Aunque es muy útil y popular, R es un lenguaje difÃcil de aprender, con una curva de aprendizaje pronunciada. Dada la necesidad obvia de CAT y MST, pero con la compleja implementación, es muy difÃcil para los usuarios simular o implementar CAT y MST. Hasta este manual, no existÃa ningún libro para que los usuarios diseñaran y utilizaran CAT y MST fácilmente y sin gastos; es decir, utilizando el software gratuito R. Todos los ejemplos e ilustraciones se generan utilizando scripts predefinidos en lenguaje R, disponibles para descarga gratuita desde el sitio web del libro. Proporciona descripciones exhaustivas de los procesos CAT y MST en un entorno R. GuÃa a los usuarios para simular e implementar CAT y MST usando R para sus aplicaciones. Resume los últimos desarrollos y desafÃos de los paquetes catR y mstR. Proporciona los paquetes R catR y mstR e ilustra a los usuarios cómo hacer CAT. y simulaciones e implementaciones de MST utilizando R David Magis, PhD, es investigador asociado del "Fonds de la Recherche Scientifique – FNRS" en el Departamento de Educación de la Universidad de Lieja, Bélgica. Su especialización son los métodos estadÃsticos en psicometrÃa, con especial interés en la teorÃa de la respuesta al Ãtem, el funcionamiento diferencial de los Ãtems y las pruebas adaptativas computarizadas. Sus intereses de investigación incluyen tanto el desarrollo teórico y metodológico como la implementación y difusión de código abierto en R. Es el principal desarrollador y mantenedor de los paquetes catR y mstR, entre otros. Duanli Yan, PhD, es Gerente de Análisis de Datos e Investigación Computacional para el grupo de Puntuación Automatizada en la división de Investigación y Desarrollo del Servicio de Pruebas Educativas (ETS). También es profesora adjunta en la Universidad de Rutgers. El Dr. Yan ha sido el coordinador estadÃstico de la prueba EXADEPâ„¢ y los programas institucionales TOEIC®, un cientÃfico de desarrollo para aplicaciones de investigación innovadoras y un psicometrista para varios programas operativos. El Dr. Yan recibió muchos premios,incluido el Premio Presidencial ETS 2011, el premio NCME Brenda Lyod 2013 y el Premio IACAT Early Career Award 2015. Es coeditora de Computerized Multistage Testing: Theory and Applications y coautora de Bayesian Networks in Educational Assessment. Alina A. von Davier, PhD, es directora senior de investigación del Centro de Investigación en PsicometrÃa Computacional del Educational Testing Service (ETS) y profesora adjunta en la Universidad de Fordham. En ETS dirige el Centro de Investigación en PsicometrÃa Computacional, donde es responsable de desarrollar un equipo de expertos y una agenda de investigación psicométrica en apoyo de las evaluaciones de próxima generación. La psicometrÃa computacional, que incluye técnicas de aprendizaje automático y minerÃa de datos, métodos de inferencia bayesianos, procesos estocásticos y modelos psicométricos, son el principal conjunto de herramientas empleadas en su trabajo actual. También trabaja con modelos psicométricos aplicados a las pruebas educativas: métodos de equiparación de puntuaciones de pruebas, modelos de teorÃa de respuesta al Ãtem y pruebas adaptativas. . |
Nota de contenido: |
Foreword -- Preface -- Ch 1 Overview of Adaptive Testing -- Ch 2 An Overview of Item Response Theory -- Part 1 Item-Level Computerized Adaptive Testing -- Ch 3 An Overview of Computerized Adaptive Testing -- Ch 4 Simulations of Computerized Adaptive Tests -- Ch 5 Examples of Simulations using catR -- Part 2 Computerized Multistage Testing -- Ch 6 An Overview of Computerized Multistage testing -- Ch 7 Simulations of Computerized Multistage Tests -- Ch 8 Examples of Simulations using mstR -- Index. |
Tipo de medio : |
Computadora |
Summary : |
The goal of this guide and manual is to provide a practical and brief overview of the theory on computerized adaptive testing (CAT) and multistage testing (MST) and to illustrate the methodologies and applications using R open source language and several data examples. Implementation relies on the R packages catR and mstR that have been already or are being developed by the first author (with the team) and that include some of the newest research algorithms on the topic. The book covers many topics along with the R-code: the basics of R, theoretical overview of CAT and MST, CAT designs, CAT assembly methodologies, CAT simulations, catR package, CAT applications, MST designs, IRT-based MST methodologies, tree-based MST methodologies, mstR package, and MST applications. CAT has been used in many large-scale assessments over recent decades, and MST has become very popular in recent years. R open source language also has become one of themost useful tools for applications in almost all fields, including business and education. Though very useful and popular, R is a difficult language to learn, with a steep learning curve. Given the obvious need for but with the complex implementation of CAT and MST, it is very difficult for users to simulate or implement CAT and MST. Until this manual, there has been no book for users to design and use CAT and MST easily and without expense; i.e., by using the free R software. All examples and illustrations are generated using predefined scripts in R language, available for free download from the book's website. Provides exhaustive descriptions of CAT and MST processes in an R environment Guides users to simulate and implement CAT and MST using R for their applications Summarizes the latest developments and challenges of packages catR and mstR Provides R packages catR and mstR and illustrates tousers how to do CAT and MST simulations and implementations using R David Magis, PhD, is Research Associate of the "Fonds de la Recherche Scientifique – FNRS" at the Department of Education, University of Liège, Belgium. His specialization is statistical methods in psychometrics, with special interest in item response theory, differential item functioning and computerized adaptive testing. His research interests include both theoretical and methodological development as well as open source implementation and dissemination in R. He is the main developer and maintainer of the packages catR and mstR, among others. Duanli Yan, PhD, is Manager of Data Analysis and Computational Research for Automated Scoring group in the Research and Development division at the Educational Testing Service (ETS). She is also an Adjunct Professor at Rutgers University. Dr. Yan has been the statistical coordinator for the EXADEP™ test,and the TOEIC® Institutional programs, a Development Scientist for innovative research applications, and a Psychometrician for several operational programs. Dr. Yan received many awards, including the 2011 ETS Presidential Award, the 2013 NCME Brenda Lyod award, and the 2015 IACAT Early Career Award. She is a co-editor for Computerized Multistage Testing: Theory and Applications and a co-author for Bayesian Networks in Educational Assessment. Alina A. von Davier, PhD, is Senior Research Director of the Computational Psychometrics Research Center at Educational Testing Service (ETS) and an Adjunct Professor at Fordham University. At ETS she leads the Computational Psychometrics Research Center, where she is responsible for developing a team of experts and a psychometric research agenda in support of next generation assessments. Computational psychometrics, which include machine learning and data mining techniques, Bayesian inferencemethods, stochastic processes and psychometric models are the main set of tools employed in her current work. She also works with psychometric models applied to educational testing: test score equating methods, item response theory models, and adaptive testing. . |
Enlace de acceso : |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
|  |