Información del autor
Autor Konukoglu, Ender |
Documentos disponibles escritos por este autor (2)
Crear una solicitud de compra Refinar búsqueda
Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning / Oyarzun Laura, Cristina ; Cardoso, M. Jorge ; Rosen-Zvi, Michal ; Kaissis, Georgios ; Linguraru, Marius George ; Shekhar, Raj ; Wesarg, Stefan ; Erdt, Marius ; Drechsler, Klaus ; Chen, Yufei ; Albarqouni, Shadi ; Bakas, Spyridon ; Landman, Bennett ; Rieke, Nicola ; Roth, Holger ; Li, Xiaoxiao ; Xu, Daguang ; Gabrani, Maria ; Konukoglu, Ender ; Guindy, Michal ; Rueckert, Daniel ; Ziller, Alexander ; Usynin, Dmitrii ; Passerat-Palmbach, Jonathan
TÃtulo : Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Workshop, LL-COVID19 2021, and First Workshop and Tutorial, PPML 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings Tipo de documento: documento electrónico Autores: Oyarzun Laura, Cristina, ; Cardoso, M. Jorge, ; Rosen-Zvi, Michal, ; Kaissis, Georgios, ; Linguraru, Marius George, ; Shekhar, Raj, ; Wesarg, Stefan, ; Erdt, Marius, ; Drechsler, Klaus, ; Chen, Yufei, ; Albarqouni, Shadi, ; Bakas, Spyridon, ; Landman, Bennett, ; Rieke, Nicola, ; Roth, Holger, ; Li, Xiaoxiao, ; Xu, Daguang, ; Gabrani, Maria, ; Konukoglu, Ender, ; Guindy, Michal, ; Rueckert, Daniel, ; Ziller, Alexander, ; Usynin, Dmitrii, ; Passerat-Palmbach, Jonathan, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XXV, 190 p. 78 ilustraciones, 67 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-90874-4 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador Aprendizaje automático Red de computadoras Ciencias sociales Redes de comunicación informática Aplicación informática en ciencias sociales y del comportamiento. Clasificación: 006.37 Resumen: Este libro constituye las actas arbitradas del décimo taller internacional sobre procedimientos clÃnicos basados ​​en imágenes, CLIP 2021, segundo taller MICCAI sobre aprendizaje distribuido y colaborativo, DCL 2021, primer taller MICCAI, LL-COVID19, primer aprendizaje automático seguro y que preserva la privacidad para Taller y tutorial sobre imágenes médicas, PPML 2021, celebrado junto con MICCAI 2021, en octubre de 2021. Estaba previsto que los talleres se llevaran a cabo en Estrasburgo, Francia, pero se llevaron a cabo virtualmente debido a la pandemia de COVID-19. CLIP 2021 aceptó 9 artÃculos de las 13 presentaciones recibidas. Se centra en modelos holÃsticos de pacientes para una atención sanitaria personalizada con el objetivo de acercar los métodos de investigación básica a la práctica clÃnica. Para DCL 2021, se aceptó para publicación 4 artÃculos de 7 presentaciones. Se ocupan del aprendizaje automático aplicado a problemas en los que los datos no se pueden almacenar en bases de datos centralizadas y la privacidad de la información es una prioridad. LL-COVID19 2021 aceptó 2 artÃculos de 3 presentados que trataban sobre el uso de modelos de IA en la práctica clÃnica. Y para PPML 2021, se aceptaron 2 artÃculos de un total de 6 presentaciones, que exploraban el uso de técnicas de privacidad en la comunidad de imágenes médicas. Nota de contenido: Intestine segmentation with small computational cost for diagnosis assistance of ileus and intestinal obstruction -- Generation of Patient-Specific, Ligamentoskeletal, Finite Element Meshes for Scoliosis Correction Planning -- Bayesian Graph Neural Networks For EEG-based Emotion Recognition -- ViTBIS: Vision Transformer for Biomedical Image Segmentation -- Attention-guided pancreatic duct segmentation from abdominal CT volumes -- Development of the Next Generation Hand-Held Doppler With Waveform Phasicity Predictive Capabilities Using Deep Learning -- Learning from mistakes: an error-driven mechanism to improve segmentation performance based on expert feedback -- TMJOAI: an artificial web-based intelligence tool for early diagnosis of the Temporomandibular Joint Osteoarthritis -- COVID-19 Infection Segmentation from Chest CT Images Based on Scale Uncertainty -- Multi-task Federated Learning for Heterogeneous Pancreas Segmentation -- Federated Learning in the Cloud for Analysis of Medical Images- Experience with Open Source Frameworks -- On the Fairness of Swarm Learning in Skin Lesion Classification -- Lessons learned from the development and application of medical imaging-based AI technologies for combating COVID-19: why discuss, what next -- The Role of Pleura and Adipose in Lung Ultrasound AI -- DuCN: Dual-children Network for Medical Diagnosis and Similar Case Recommendation towards COVID-19 -- Data imputation and reconstruction of distributed Parkinson's disease clinical assessments: A comparative evaluation of two aggregation algorithms -- Defending Medical Image Diagnostics against Privacy Attacks using Generative Methods: Application to Retinal Diagnostics. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 10th International Workshop on Clinical Image-Based Procedures, CLIP 2021, Second MICCAI Workshop on Distributed and Collaborative Learning, DCL 2021, First MICCAI Workshop, LL-COVID19, First Secure and Privacy-Preserving Machine Learning for Medical Imaging Workshop and Tutorial, PPML 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. CLIP 2021 accepted 9 papers from the 13 submissions received. It focuses on holistic patient models for personalized healthcare with the goal to bring basic research methods closer to the clinical practice. For DCL 2021, 4 papers from 7 submissions were accepted for publication. They deal with machine learning applied to problems where data cannot be stored in centralized databases and information privacy is a priority. LL-COVID19 2021 accepted 2 papers out of 3 submissions dealing with the use of AI models in clinical practice. And for PPML 2021, 2 papers were accepted from a total of 6 submissions, exploring the use of privacy techniques in the medical imaging community. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Workshop, LL-COVID19 2021, and First Workshop and Tutorial, PPML 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings [documento electrónico] / Oyarzun Laura, Cristina, ; Cardoso, M. Jorge, ; Rosen-Zvi, Michal, ; Kaissis, Georgios, ; Linguraru, Marius George, ; Shekhar, Raj, ; Wesarg, Stefan, ; Erdt, Marius, ; Drechsler, Klaus, ; Chen, Yufei, ; Albarqouni, Shadi, ; Bakas, Spyridon, ; Landman, Bennett, ; Rieke, Nicola, ; Roth, Holger, ; Li, Xiaoxiao, ; Xu, Daguang, ; Gabrani, Maria, ; Konukoglu, Ender, ; Guindy, Michal, ; Rueckert, Daniel, ; Ziller, Alexander, ; Usynin, Dmitrii, ; Passerat-Palmbach, Jonathan, . - 1 ed. . - [s.l.] : Springer, 2021 . - XXV, 190 p. 78 ilustraciones, 67 ilustraciones en color.
ISBN : 978-3-030-90874-4
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador Aprendizaje automático Red de computadoras Ciencias sociales Redes de comunicación informática Aplicación informática en ciencias sociales y del comportamiento. Clasificación: 006.37 Resumen: Este libro constituye las actas arbitradas del décimo taller internacional sobre procedimientos clÃnicos basados ​​en imágenes, CLIP 2021, segundo taller MICCAI sobre aprendizaje distribuido y colaborativo, DCL 2021, primer taller MICCAI, LL-COVID19, primer aprendizaje automático seguro y que preserva la privacidad para Taller y tutorial sobre imágenes médicas, PPML 2021, celebrado junto con MICCAI 2021, en octubre de 2021. Estaba previsto que los talleres se llevaran a cabo en Estrasburgo, Francia, pero se llevaron a cabo virtualmente debido a la pandemia de COVID-19. CLIP 2021 aceptó 9 artÃculos de las 13 presentaciones recibidas. Se centra en modelos holÃsticos de pacientes para una atención sanitaria personalizada con el objetivo de acercar los métodos de investigación básica a la práctica clÃnica. Para DCL 2021, se aceptó para publicación 4 artÃculos de 7 presentaciones. Se ocupan del aprendizaje automático aplicado a problemas en los que los datos no se pueden almacenar en bases de datos centralizadas y la privacidad de la información es una prioridad. LL-COVID19 2021 aceptó 2 artÃculos de 3 presentados que trataban sobre el uso de modelos de IA en la práctica clÃnica. Y para PPML 2021, se aceptaron 2 artÃculos de un total de 6 presentaciones, que exploraban el uso de técnicas de privacidad en la comunidad de imágenes médicas. Nota de contenido: Intestine segmentation with small computational cost for diagnosis assistance of ileus and intestinal obstruction -- Generation of Patient-Specific, Ligamentoskeletal, Finite Element Meshes for Scoliosis Correction Planning -- Bayesian Graph Neural Networks For EEG-based Emotion Recognition -- ViTBIS: Vision Transformer for Biomedical Image Segmentation -- Attention-guided pancreatic duct segmentation from abdominal CT volumes -- Development of the Next Generation Hand-Held Doppler With Waveform Phasicity Predictive Capabilities Using Deep Learning -- Learning from mistakes: an error-driven mechanism to improve segmentation performance based on expert feedback -- TMJOAI: an artificial web-based intelligence tool for early diagnosis of the Temporomandibular Joint Osteoarthritis -- COVID-19 Infection Segmentation from Chest CT Images Based on Scale Uncertainty -- Multi-task Federated Learning for Heterogeneous Pancreas Segmentation -- Federated Learning in the Cloud for Analysis of Medical Images- Experience with Open Source Frameworks -- On the Fairness of Swarm Learning in Skin Lesion Classification -- Lessons learned from the development and application of medical imaging-based AI technologies for combating COVID-19: why discuss, what next -- The Role of Pleura and Adipose in Lung Ultrasound AI -- DuCN: Dual-children Network for Medical Diagnosis and Similar Case Recommendation towards COVID-19 -- Data imputation and reconstruction of distributed Parkinson's disease clinical assessments: A comparative evaluation of two aggregation algorithms -- Defending Medical Image Diagnostics against Privacy Attacks using Generative Methods: Application to Retinal Diagnostics. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 10th International Workshop on Clinical Image-Based Procedures, CLIP 2021, Second MICCAI Workshop on Distributed and Collaborative Learning, DCL 2021, First MICCAI Workshop, LL-COVID19, First Secure and Privacy-Preserving Machine Learning for Medical Imaging Workshop and Tutorial, PPML 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. CLIP 2021 accepted 9 papers from the 13 submissions received. It focuses on holistic patient models for personalized healthcare with the goal to bring basic research methods closer to the clinical practice. For DCL 2021, 4 papers from 7 submissions were accepted for publication. They deal with machine learning applied to problems where data cannot be stored in centralized databases and information privacy is a priority. LL-COVID19 2021 accepted 2 papers out of 3 submissions dealing with the use of AI models in clinical practice. And for PPML 2021, 2 papers were accepted from a total of 6 submissions, exploring the use of privacy techniques in the medical imaging community. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support / Suzuki, Kenji ; Reyes, Mauricio ; Syeda-Mahmood, Tanveer ; Konukoglu, Ender ; Glocker, Ben ; Wiest, Roland ; Gur, Yaniv ; Greenspan, Hayit ; Madabhushi, Anant
TÃtulo : Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support : Second International Workshop, iMIMIC 2019, and 9th International Workshop, ML-CDS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings Tipo de documento: documento electrónico Autores: Suzuki, Kenji, ; Reyes, Mauricio, ; Syeda-Mahmood, Tanveer, ; Konukoglu, Ender, ; Glocker, Ben, ; Wiest, Roland, ; Gur, Yaniv, ; Greenspan, Hayit, ; Madabhushi, Anant, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XVI, 93 p. 40 ilustraciones, 35 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-33850-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia artificial Informática de la Salud Lenguajes formales y teorÃa de los autómatas Visión por computador TeorÃa de las máquinas Informática Médica Clasificación: 006.3 Resumen: Este libro constituye las actas conjuntas arbitradas del Segundo Taller Internacional sobre Interpretabilidad de la Inteligencia Artificial en Computación de Imágenes Médicas, iMIMIC 2019, y el 9º Taller Internacional sobre Aprendizaje Multimodal para el Apoyo a la Decisión ClÃnica, ML-CDS 2019, celebrado en conjunto con el 22º Taller Internacional Conferencia sobre imágenes médicas e intervención asistida por computadora, MICCAI 2019, en Shenzhen, China, en octubre de 2019. Los 7 artÃculos completos presentados en iMIMIC 2019 y los 3 artÃculos completos presentados en ML-CDS 2019 fueron cuidadosamente revisados ​​y seleccionados entre 10 presentaciones para iMIMIC y numerosas presentaciones a ML-CDS. Los artÃculos de iMIMIC se centran en presentar los desafÃos y oportunidades relacionados con el tema de la interpretabilidad de los sistemas de aprendizaje automático en el contexto de las imágenes médicas y la intervención asistida por computadora. Los artÃculos de ML-CDS analizan el aprendizaje automático en conjuntos de datos multimodales para apoyar la toma de decisiones clÃnicas y la planificación del tratamiento. . Nota de contenido: Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019) -- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification -- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics -- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis -- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection -- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules -- Deep neural network or dermatologist? -- Towards Interpretability of Segmentation Networks by analyzing DeepDreams -- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019) -- Towards Automatic Diagnosis from Multi-modal Medical Data -- Deep Learning based Multi-Modal Registration for Retinal Imaging.-Automated Enriched Medical Concept Generation for Chest X-ray Images. Tipo de medio : Computadora Summary : This book constitutes the refereed joint proceedings of the Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2019, and the 9th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 7 full papers presented at iMIMIC 2019 and the 3 full papers presented at ML-CDS 2019 were carefully reviewed and selected from 10 submissions to iMIMIC and numerous submissions to ML-CDS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning. . Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support : Second International Workshop, iMIMIC 2019, and 9th International Workshop, ML-CDS 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings [documento electrónico] / Suzuki, Kenji, ; Reyes, Mauricio, ; Syeda-Mahmood, Tanveer, ; Konukoglu, Ender, ; Glocker, Ben, ; Wiest, Roland, ; Gur, Yaniv, ; Greenspan, Hayit, ; Madabhushi, Anant, . - 1 ed. . - [s.l.] : Springer, 2019 . - XVI, 93 p. 40 ilustraciones, 35 ilustraciones en color.
ISBN : 978-3-030-33850-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia artificial Informática de la Salud Lenguajes formales y teorÃa de los autómatas Visión por computador TeorÃa de las máquinas Informática Médica Clasificación: 006.3 Resumen: Este libro constituye las actas conjuntas arbitradas del Segundo Taller Internacional sobre Interpretabilidad de la Inteligencia Artificial en Computación de Imágenes Médicas, iMIMIC 2019, y el 9º Taller Internacional sobre Aprendizaje Multimodal para el Apoyo a la Decisión ClÃnica, ML-CDS 2019, celebrado en conjunto con el 22º Taller Internacional Conferencia sobre imágenes médicas e intervención asistida por computadora, MICCAI 2019, en Shenzhen, China, en octubre de 2019. Los 7 artÃculos completos presentados en iMIMIC 2019 y los 3 artÃculos completos presentados en ML-CDS 2019 fueron cuidadosamente revisados ​​y seleccionados entre 10 presentaciones para iMIMIC y numerosas presentaciones a ML-CDS. Los artÃculos de iMIMIC se centran en presentar los desafÃos y oportunidades relacionados con el tema de la interpretabilidad de los sistemas de aprendizaje automático en el contexto de las imágenes médicas y la intervención asistida por computadora. Los artÃculos de ML-CDS analizan el aprendizaje automático en conjuntos de datos multimodales para apoyar la toma de decisiones clÃnicas y la planificación del tratamiento. . Nota de contenido: Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019) -- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification -- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics -- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis -- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection -- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules -- Deep neural network or dermatologist? -- Towards Interpretability of Segmentation Networks by analyzing DeepDreams -- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019) -- Towards Automatic Diagnosis from Multi-modal Medical Data -- Deep Learning based Multi-Modal Registration for Retinal Imaging.-Automated Enriched Medical Concept Generation for Chest X-ray Images. Tipo de medio : Computadora Summary : This book constitutes the refereed joint proceedings of the Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2019, and the 9th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 7 full papers presented at iMIMIC 2019 and the 3 full papers presented at ML-CDS 2019 were carefully reviewed and selected from 10 submissions to iMIMIC and numerous submissions to ML-CDS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning. . Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]