Autor Albarqouni, Shadi
|
|
Documentos disponibles escritos por este autor (7)
Hacer una sugerencia Refinar búsqueda6th Joint International Workshops, CVII-STENT 2017 and Second International Workshop, LABELS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 10–14, 2017, Proceedings / Cardoso, M. Jorge ; Arbel, Tal ; Lee, Su-Lin ; Cheplygina, Veronika ; Balocco, Simone ; Mateus, Diana ; Zahnd, Guillaume ; Maier-Hein, Lena ; Demirci, Stefanie ; Granger, Eric ; Duong, Luc ; Carbonneau, Marc-André ; Albarqouni, Shadi ; Carneiro, Gustavo
![]()
Título : 6th Joint International Workshops, CVII-STENT 2017 and Second International Workshop, LABELS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 10–14, 2017, Proceedings Tipo de documento: documento electrónico Autores: Cardoso, M. Jorge, ; Arbel, Tal, ; Lee, Su-Lin, ; Cheplygina, Veronika, ; Balocco, Simone, ; Mateus, Diana, ; Zahnd, Guillaume, ; Maier-Hein, Lena, ; Demirci, Stefanie, ; Granger, Eric, ; Duong, Luc, ; Carbonneau, Marc-André, ; Albarqouni, Shadi, ; Carneiro, Gustavo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2017 Número de páginas: XVI, 166 p. 73 ilustraciones ISBN/ISSN/DL: 978-3-319-67534-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Ingeniería Informática y Redes Informática de la Salud Red informática Ingeniería Informática Inteligencia artificial Informática Médica Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas conjuntas arbitradas del 6º Taller Internacional Conjunto sobre Computación y Visualización para Imágenes Intravasculares y Colocación de Stents Asistidos por Computadora, CVII-STENT 2017, y el Segundo Taller Internacional sobre Anotación a Gran Escala de Datos Biomédicos y Síntesis de Etiquetas Expertas, LABELS 2017 , celebrada junto con la 20.ª Conferencia Internacional sobre Imágenes Médicas e Intervención Asistida por Computadora, MICCAI 2017, en la ciudad de Québec, QC, Canadá, en septiembre de 2017. Los 6 artículos completos presentados en CVII-STENT 2017 y los 11 artículos completos presentados en LABELS 2017 fueron cuidadosamente revisadas y seleccionadas. Los artículos CVII-STENT presentan lo último en imágenes, tratamiento e intervención asistida por computadora en el campo de las intervenciones endovasculares. Los artículos de LABELS presentan una variedad de enfoques para abordar pocas etiquetas, desde el aprendizaje por transferencia hasta el crowdsourcing. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i 6th Joint International Workshops, CVII-STENT 2017 and Second International Workshop, LABELS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 10–14, 2017, Proceedings [documento electrónico] / Cardoso, M. Jorge, ; Arbel, Tal, ; Lee, Su-Lin, ; Cheplygina, Veronika, ; Balocco, Simone, ; Mateus, Diana, ; Zahnd, Guillaume, ; Maier-Hein, Lena, ; Demirci, Stefanie, ; Granger, Eric, ; Duong, Luc, ; Carbonneau, Marc-André, ; Albarqouni, Shadi, ; Carneiro, Gustavo, . - 1 ed. . - [s.l.] : Springer, 2017 . - XVI, 166 p. 73 ilustraciones.
ISBN : 978-3-319-67534-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Ingeniería Informática y Redes Informática de la Salud Red informática Ingeniería Informática Inteligencia artificial Informática Médica Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas conjuntas arbitradas del 6º Taller Internacional Conjunto sobre Computación y Visualización para Imágenes Intravasculares y Colocación de Stents Asistidos por Computadora, CVII-STENT 2017, y el Segundo Taller Internacional sobre Anotación a Gran Escala de Datos Biomédicos y Síntesis de Etiquetas Expertas, LABELS 2017 , celebrada junto con la 20.ª Conferencia Internacional sobre Imágenes Médicas e Intervención Asistida por Computadora, MICCAI 2017, en la ciudad de Québec, QC, Canadá, en septiembre de 2017. Los 6 artículos completos presentados en CVII-STENT 2017 y los 11 artículos completos presentados en LABELS 2017 fueron cuidadosamente revisadas y seleccionadas. Los artículos CVII-STENT presentan lo último en imágenes, tratamiento e intervención asistida por computadora en el campo de las intervenciones endovasculares. Los artículos de LABELS presentan una variedad de enfoques para abordar pocas etiquetas, desde el aprendizaje por transferencia hasta el crowdsourcing. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning / Oyarzun Laura, Cristina ; Cardoso, M. Jorge ; Rosen-Zvi, Michal ; Kaissis, Georgios ; Linguraru, Marius George ; Shekhar, Raj ; Wesarg, Stefan ; Erdt, Marius ; Drechsler, Klaus ; Chen, Yufei ; Albarqouni, Shadi ; Bakas, Spyridon ; Landman, Bennett ; Rieke, Nicola ; Roth, Holger ; Li, Xiaoxiao ; Xu, Daguang ; Gabrani, Maria ; Konukoglu, Ender ; Guindy, Michal ; Rueckert, Daniel ; Ziller, Alexander ; Usynin, Dmitrii ; Passerat-Palmbach, Jonathan
![]()
Título : Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Workshop, LL-COVID19 2021, and First Workshop and Tutorial, PPML 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings Tipo de documento: documento electrónico Autores: Oyarzun Laura, Cristina, ; Cardoso, M. Jorge, ; Rosen-Zvi, Michal, ; Kaissis, Georgios, ; Linguraru, Marius George, ; Shekhar, Raj, ; Wesarg, Stefan, ; Erdt, Marius, ; Drechsler, Klaus, ; Chen, Yufei, ; Albarqouni, Shadi, ; Bakas, Spyridon, ; Landman, Bennett, ; Rieke, Nicola, ; Roth, Holger, ; Li, Xiaoxiao, ; Xu, Daguang, ; Gabrani, Maria, ; Konukoglu, Ender, ; Guindy, Michal, ; Rueckert, Daniel, ; Ziller, Alexander, ; Usynin, Dmitrii, ; Passerat-Palmbach, Jonathan, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XXV, 190 p. 78 ilustraciones, 67 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-90874-4 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Aprendizaje automático Red de computadoras Ciencias sociales Redes de comunicación informática Aplicación informática en ciencias sociales y del comportamiento Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del décimo taller internacional sobre procedimientos clínicos basados en imágenes, CLIP 2021, segundo taller MICCAI sobre aprendizaje distribuido y colaborativo, DCL 2021, primer taller MICCAI, LL-COVID19, primer aprendizaje automático seguro y que preserva la privacidad para Taller y tutorial sobre imágenes médicas, PPML 2021, celebrado junto con MICCAI 2021, en octubre de 2021. Estaba previsto que los talleres se llevaran a cabo en Estrasburgo, Francia, pero se llevaron a cabo virtualmente debido a la pandemia de COVID-19. CLIP 2021 aceptó 9 artículos de las 13 presentaciones recibidas. Se centra en modelos holísticos de pacientes para una atención sanitaria personalizada con el objetivo de acercar los métodos de investigación básica a la práctica clínica. Para DCL 2021, se aceptó para publicación 4 artículos de 7 presentaciones. Se ocupan del aprendizaje automático aplicado a problemas en los que los datos no se pueden almacenar en bases de datos centralizadas y la privacidad de la información es una prioridad. LL-COVID19 2021 aceptó 2 artículos de 3 presentados que trataban sobre el uso de modelos de IA en la práctica clínica. Y para PPML 2021, se aceptaron 2 artículos de un total de 6 presentaciones, que exploraban el uso de técnicas de privacidad en la comunidad de imágenes médicas. Nota de contenido: Intestine segmentation with small computational cost for diagnosis assistance of ileus and intestinal obstruction -- Generation of Patient-Specific, Ligamentoskeletal, Finite Element Meshes for Scoliosis Correction Planning -- Bayesian Graph Neural Networks For EEG-based Emotion Recognition -- ViTBIS: Vision Transformer for Biomedical Image Segmentation -- Attention-guided pancreatic duct segmentation from abdominal CT volumes -- Development of the Next Generation Hand-Held Doppler With Waveform Phasicity Predictive Capabilities Using Deep Learning -- Learning from mistakes: an error-driven mechanism to improve segmentation performance based on expert feedback -- TMJOAI: an artificial web-based intelligence tool for early diagnosis of the Temporomandibular Joint Osteoarthritis -- COVID-19 Infection Segmentation from Chest CT Images Based on Scale Uncertainty -- Multi-task Federated Learning for Heterogeneous Pancreas Segmentation -- Federated Learning in the Cloud for Analysis of Medical Images- Experience with Open Source Frameworks -- On the Fairness of Swarm Learning in Skin Lesion Classification -- Lessons learned from the development and application of medical imaging-based AI technologies for combating COVID-19: why discuss, what next -- The Role of Pleura and Adipose in Lung Ultrasound AI -- DuCN: Dual-children Network for Medical Diagnosis and Similar Case Recommendation towards COVID-19 -- Data imputation and reconstruction of distributed Parkinson's disease clinical assessments: A comparative evaluation of two aggregation algorithms -- Defending Medical Image Diagnostics against Privacy Attacks using Generative Methods: Application to Retinal Diagnostics. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Workshop, LL-COVID19 2021, and First Workshop and Tutorial, PPML 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings [documento electrónico] / Oyarzun Laura, Cristina, ; Cardoso, M. Jorge, ; Rosen-Zvi, Michal, ; Kaissis, Georgios, ; Linguraru, Marius George, ; Shekhar, Raj, ; Wesarg, Stefan, ; Erdt, Marius, ; Drechsler, Klaus, ; Chen, Yufei, ; Albarqouni, Shadi, ; Bakas, Spyridon, ; Landman, Bennett, ; Rieke, Nicola, ; Roth, Holger, ; Li, Xiaoxiao, ; Xu, Daguang, ; Gabrani, Maria, ; Konukoglu, Ender, ; Guindy, Michal, ; Rueckert, Daniel, ; Ziller, Alexander, ; Usynin, Dmitrii, ; Passerat-Palmbach, Jonathan, . - 1 ed. . - [s.l.] : Springer, 2021 . - XXV, 190 p. 78 ilustraciones, 67 ilustraciones en color.
ISBN : 978-3-030-90874-4
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Aprendizaje automático Red de computadoras Ciencias sociales Redes de comunicación informática Aplicación informática en ciencias sociales y del comportamiento Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del décimo taller internacional sobre procedimientos clínicos basados en imágenes, CLIP 2021, segundo taller MICCAI sobre aprendizaje distribuido y colaborativo, DCL 2021, primer taller MICCAI, LL-COVID19, primer aprendizaje automático seguro y que preserva la privacidad para Taller y tutorial sobre imágenes médicas, PPML 2021, celebrado junto con MICCAI 2021, en octubre de 2021. Estaba previsto que los talleres se llevaran a cabo en Estrasburgo, Francia, pero se llevaron a cabo virtualmente debido a la pandemia de COVID-19. CLIP 2021 aceptó 9 artículos de las 13 presentaciones recibidas. Se centra en modelos holísticos de pacientes para una atención sanitaria personalizada con el objetivo de acercar los métodos de investigación básica a la práctica clínica. Para DCL 2021, se aceptó para publicación 4 artículos de 7 presentaciones. Se ocupan del aprendizaje automático aplicado a problemas en los que los datos no se pueden almacenar en bases de datos centralizadas y la privacidad de la información es una prioridad. LL-COVID19 2021 aceptó 2 artículos de 3 presentados que trataban sobre el uso de modelos de IA en la práctica clínica. Y para PPML 2021, se aceptaron 2 artículos de un total de 6 presentaciones, que exploraban el uso de técnicas de privacidad en la comunidad de imágenes médicas. Nota de contenido: Intestine segmentation with small computational cost for diagnosis assistance of ileus and intestinal obstruction -- Generation of Patient-Specific, Ligamentoskeletal, Finite Element Meshes for Scoliosis Correction Planning -- Bayesian Graph Neural Networks For EEG-based Emotion Recognition -- ViTBIS: Vision Transformer for Biomedical Image Segmentation -- Attention-guided pancreatic duct segmentation from abdominal CT volumes -- Development of the Next Generation Hand-Held Doppler With Waveform Phasicity Predictive Capabilities Using Deep Learning -- Learning from mistakes: an error-driven mechanism to improve segmentation performance based on expert feedback -- TMJOAI: an artificial web-based intelligence tool for early diagnosis of the Temporomandibular Joint Osteoarthritis -- COVID-19 Infection Segmentation from Chest CT Images Based on Scale Uncertainty -- Multi-task Federated Learning for Heterogeneous Pancreas Segmentation -- Federated Learning in the Cloud for Analysis of Medical Images- Experience with Open Source Frameworks -- On the Fairness of Swarm Learning in Skin Lesion Classification -- Lessons learned from the development and application of medical imaging-based AI technologies for combating COVID-19: why discuss, what next -- The Role of Pleura and Adipose in Lung Ultrasound AI -- DuCN: Dual-children Network for Medical Diagnosis and Similar Case Recommendation towards COVID-19 -- Data imputation and reconstruction of distributed Parkinson's disease clinical assessments: A comparative evaluation of two aggregation algorithms -- Defending Medical Image Diagnostics against Privacy Attacks using Generative Methods: Application to Retinal Diagnostics. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health / Albarqouni, Shadi ; Cardoso, M. Jorge ; Dou, Qi ; Kamnitsas, Konstantinos ; Khanal, Bishesh ; Rekik, Islem ; Rieke, Nicola ; Sheet, Debdoot ; Tsaftaris, Sotirios ; Xu, Daguang ; Xu, Ziyue
![]()
Título : Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health : Third MICCAI Workshop, DART 2021, and First MICCAI Workshop, FAIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings Tipo de documento: documento electrónico Autores: Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Dou, Qi, ; Kamnitsas, Konstantinos, ; Khanal, Bishesh, ; Rekik, Islem, ; Rieke, Nicola, ; Sheet, Debdoot, ; Tsaftaris, Sotirios, ; Xu, Daguang, ; Xu, Ziyue, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XV, 264 p. 95 ilustraciones, 90 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-87722-4 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Inteligencia artificial Bioinformática Informática Médica Biología Computacional y de Sistemas Informática de la Salud Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Tercer Taller MICCAI sobre Adaptación de Dominios y Transferencia de Representación, DART 2021, y el Primer Taller MICCAI sobre Atención Médica Asequible e IA para la Salud Global con Diversidad de Recursos, FAIR 2021, celebrado junto con MICCAI 2021, en septiembre/octubre de 2021. Los talleres estaban previstos para realizarse en Estrasburgo, Francia, pero se realizaron de forma virtual debido a la pandemia de COVID-19. DART 2021 aceptó 13 artículos de las 21 presentaciones recibidas. El taller tiene como objetivo crear un foro de debate para comparar, evaluar y discutir los avances metodológicos y las ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en el entorno clínico al hacerlos robustos y consistentes en diferentes dominios. Para FAIR 2021, se aceptaron para su publicación 10 artículos de 17 presentaciones. Se centran en la traducción de imagen a imagen, en particular para entornos de baja dosis o baja resolución; la compacidad y compresión del modelo; Adaptación de dominio y aprendizaje por transferencia; aprendizaje activo, continuo y metaaprendizaje. Nota de contenido: Domain Adaptation and Representation Transfer -- A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis -- Self-supervised Multi-scale Consistency for Weakly Supervised Segmentation Learning -- FDA: Feature Decomposition and Aggregation for Robust Airway Segmentation -- Adversarial Continual Learning for Multi-Domain Hippocampal Segmentation -- Self-Supervised Multimodal Generalized Zero Shot Learning For Gleason Grading -- Self-Supervised Learning of Inter-Label Geometric Relationships For Gleason Grade Segmentation -- Stop Throwing Away Discriminators! Re-using Adversaries for Test-Time Training -- Transductive image segmentation: Self-training and effect of uncertainty estimation -- Unsupervised Domain Adaptation with Semantic Consistency across Heterogeneous Modalities for MRI Prostate Lesion Segmentation -- Cohort Bias Adaptation in Federated Datasets for Lesion Segmentation -- Exploring Deep Registration Latent Spaces -- Learning from Partially Overlapping Labels: Image Segmentation under Annotation Shift -- Unsupervised Domain Adaption via Similarity-based Prototypes for Cross-Modality Segmentation -- A ordable AI and Healthcare -- Classification and Generation of Microscopy Images with Plasmodium Falciparum via Arti cial Neural Networks using Low Cost Settings -- Contrast and Resolution Improvement of POCUS Using Self-Consistent CycleGAN -- Low-Dose Dynamic CT Perfusion Denoising without Training Data -- Recurrent Brain Graph Mapper for Predicting Time-Dependent Brain Graph Evaluation Trajectory -- COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep Convolutional Neural Network Design for Detection of COVID-19Patient Cases from Point-of-care Ultrasound Imaging -- Inter-Domain Alignment for Predicting High-Resolution Brain Networks Using Teacher-Student Learning -- Sickle Cell Disease Severity Prediction from Percoll Gradient Images using Graph Convolutional Networks -- Continual Domain Incremental Learning for Chest X-ray Classificationin Low-Resource Clinical Settings -- Deep learning based Automatic detection of adequately positioned mammograms -- Can non-specialists provide high quality Gold standard labels in challenging modalities. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health : Third MICCAI Workshop, DART 2021, and First MICCAI Workshop, FAIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings [documento electrónico] / Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Dou, Qi, ; Kamnitsas, Konstantinos, ; Khanal, Bishesh, ; Rekik, Islem, ; Rieke, Nicola, ; Sheet, Debdoot, ; Tsaftaris, Sotirios, ; Xu, Daguang, ; Xu, Ziyue, . - 1 ed. . - [s.l.] : Springer, 2021 . - XV, 264 p. 95 ilustraciones, 90 ilustraciones en color.
ISBN : 978-3-030-87722-4
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Inteligencia artificial Bioinformática Informática Médica Biología Computacional y de Sistemas Informática de la Salud Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Tercer Taller MICCAI sobre Adaptación de Dominios y Transferencia de Representación, DART 2021, y el Primer Taller MICCAI sobre Atención Médica Asequible e IA para la Salud Global con Diversidad de Recursos, FAIR 2021, celebrado junto con MICCAI 2021, en septiembre/octubre de 2021. Los talleres estaban previstos para realizarse en Estrasburgo, Francia, pero se realizaron de forma virtual debido a la pandemia de COVID-19. DART 2021 aceptó 13 artículos de las 21 presentaciones recibidas. El taller tiene como objetivo crear un foro de debate para comparar, evaluar y discutir los avances metodológicos y las ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en el entorno clínico al hacerlos robustos y consistentes en diferentes dominios. Para FAIR 2021, se aceptaron para su publicación 10 artículos de 17 presentaciones. Se centran en la traducción de imagen a imagen, en particular para entornos de baja dosis o baja resolución; la compacidad y compresión del modelo; Adaptación de dominio y aprendizaje por transferencia; aprendizaje activo, continuo y metaaprendizaje. Nota de contenido: Domain Adaptation and Representation Transfer -- A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis -- Self-supervised Multi-scale Consistency for Weakly Supervised Segmentation Learning -- FDA: Feature Decomposition and Aggregation for Robust Airway Segmentation -- Adversarial Continual Learning for Multi-Domain Hippocampal Segmentation -- Self-Supervised Multimodal Generalized Zero Shot Learning For Gleason Grading -- Self-Supervised Learning of Inter-Label Geometric Relationships For Gleason Grade Segmentation -- Stop Throwing Away Discriminators! Re-using Adversaries for Test-Time Training -- Transductive image segmentation: Self-training and effect of uncertainty estimation -- Unsupervised Domain Adaptation with Semantic Consistency across Heterogeneous Modalities for MRI Prostate Lesion Segmentation -- Cohort Bias Adaptation in Federated Datasets for Lesion Segmentation -- Exploring Deep Registration Latent Spaces -- Learning from Partially Overlapping Labels: Image Segmentation under Annotation Shift -- Unsupervised Domain Adaption via Similarity-based Prototypes for Cross-Modality Segmentation -- A ordable AI and Healthcare -- Classification and Generation of Microscopy Images with Plasmodium Falciparum via Arti cial Neural Networks using Low Cost Settings -- Contrast and Resolution Improvement of POCUS Using Self-Consistent CycleGAN -- Low-Dose Dynamic CT Perfusion Denoising without Training Data -- Recurrent Brain Graph Mapper for Predicting Time-Dependent Brain Graph Evaluation Trajectory -- COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep Convolutional Neural Network Design for Detection of COVID-19Patient Cases from Point-of-care Ultrasound Imaging -- Inter-Domain Alignment for Predicting High-Resolution Brain Networks Using Teacher-Student Learning -- Sickle Cell Disease Severity Prediction from Percoll Gradient Images using Graph Convolutional Networks -- Continual Domain Incremental Learning for Chest X-ray Classificationin Low-Resource Clinical Settings -- Deep learning based Automatic detection of adequately positioned mammograms -- Can non-specialists provide high quality Gold standard labels in challenging modalities. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data / Wang, Qian ; Milletari, Fausto ; Nguyen, Hien V. ; Albarqouni, Shadi ; Cardoso, M. Jorge ; Rieke, Nicola ; Xu, Ziyue ; Kamnitsas, Konstantinos ; Patel, Vishal ; Roysam, Badri ; Jiang, Steve ; Zhou, Kevin ; Luu, Khoa ; Le, Ngan
![]()
Título : Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data : First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings Tipo de documento: documento electrónico Autores: Wang, Qian, ; Milletari, Fausto, ; Nguyen, Hien V., ; Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Rieke, Nicola, ; Xu, Ziyue, ; Kamnitsas, Konstantinos, ; Patel, Vishal, ; Roysam, Badri, ; Jiang, Steve, ; Zhou, Kevin, ; Luu, Khoa, ; Le, Ngan, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XVII, 254 p. 113 ilustraciones, 79 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-33391-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Inteligencia artificial Informática Médica Informática de la Salud Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Primer Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2019, y el Primer Taller Internacional sobre Aprendizaje de Imágenes Médicas con Menos Etiquetas y Datos Imperfectos, MIL3ID 2019, celebrado junto con MICCAI 2019, en Shenzhen, China, en octubre de 2019. DART 2019 aceptó 12 artículos para publicación de 18 presentaciones. Los artículos abordan avances metodológicos e ideas que pueden mejorar la aplicabilidad del aprendizaje automático y los enfoques de aprendizaje profundo en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. MIL3ID aceptó 16 artículos de 43 enviados para publicación, que abordan las mejores prácticas en el aprendizaje de imágenes médicas con escasez de etiquetas e imperfección de datos. . Nota de contenido: DART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Imagesand Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data : First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings [documento electrónico] / Wang, Qian, ; Milletari, Fausto, ; Nguyen, Hien V., ; Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Rieke, Nicola, ; Xu, Ziyue, ; Kamnitsas, Konstantinos, ; Patel, Vishal, ; Roysam, Badri, ; Jiang, Steve, ; Zhou, Kevin, ; Luu, Khoa, ; Le, Ngan, . - 1 ed. . - [s.l.] : Springer, 2019 . - XVII, 254 p. 113 ilustraciones, 79 ilustraciones en color.
ISBN : 978-3-030-33391-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Inteligencia artificial Informática Médica Informática de la Salud Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas arbitradas del Primer Taller MICCAI sobre Adaptación de Dominio y Transferencia de Representación, DART 2019, y el Primer Taller Internacional sobre Aprendizaje de Imágenes Médicas con Menos Etiquetas y Datos Imperfectos, MIL3ID 2019, celebrado junto con MICCAI 2019, en Shenzhen, China, en octubre de 2019. DART 2019 aceptó 12 artículos para publicación de 18 presentaciones. Los artículos abordan avances metodológicos e ideas que pueden mejorar la aplicabilidad del aprendizaje automático y los enfoques de aprendizaje profundo en entornos clínicos haciéndolos sólidos y consistentes en diferentes dominios. MIL3ID aceptó 16 artículos de 43 enviados para publicación, que abordan las mejores prácticas en el aprendizaje de imágenes médicas con escasez de etiquetas e imperfección de datos. . Nota de contenido: DART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Imagesand Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis / Stoyanov, Danail ; Taylor, Zeike ; Balocco, Simone ; Sznitman, Raphael ; Martel, Anne ; Maier-Hein, Lena ; Duong, Luc ; Zahnd, Guillaume ; Demirci, Stefanie ; Albarqouni, Shadi ; Lee, Su-Lin ; Moriconi, Stefano ; Cheplygina, Veronika ; Mateus, Diana ; Trucco, Emanuele ; Granger, Eric ; Jannin, Pierre
![]()
Título : Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings Tipo de documento: documento electrónico Autores: Stoyanov, Danail, ; Taylor, Zeike, ; Balocco, Simone, ; Sznitman, Raphael, ; Martel, Anne, ; Maier-Hein, Lena, ; Duong, Luc, ; Zahnd, Guillaume, ; Demirci, Stefanie, ; Albarqouni, Shadi, ; Lee, Su-Lin, ; Moriconi, Stefano, ; Cheplygina, Veronika, ; Mateus, Diana, ; Trucco, Emanuele, ; Granger, Eric, ; Jannin, Pierre, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2018 Número de páginas: XVII, 202 p. 111 ilustraciones, 65 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-01364-6 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Informática Médica Visión por computador Ingeniería Informática y Redes Inteligencia artificial Informática de la Salud Red informática Ingeniería Informática Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas conjuntas arbitradas del 7.º Taller internacional conjunto sobre computación y visualización para imágenes intravasculares y colocación de stents asistida por computadora, CVII-STENT 2018, y el Tercer taller internacional sobre anotación a gran escala de datos biomédicos y síntesis experta de etiquetas, LABELS 2018, celebrados conjuntamente con la 21.ª Conferencia internacional sobre imágenes médicas e intervención asistida por computadora, MICCAI 2018, en Granada, España, en septiembre de 2018. Los 9 artículos completos presentados en CVII-STENT 2017 y los 12 artículos completos presentados en LABELS 2017 fueron revisados y seleccionados cuidadosamente. Los artículos de CVII-STENT presentan el estado del arte en imágenes, tratamiento e intervención asistida por computadora en el campo de las intervenciones endovasculares. Los artículos de LABELS presentan una variedad de enfoques para abordar pocas etiquetas, desde el aprendizaje por transferencia hasta el crowdsourcing. Nota de contenido: Blood-flow estimation in the hepatic arteries based on 3D/2D angiography registration -- Automated quantification of blood flow velocity from time-resolved CT angiography -- Multiple device segmentation for fluoroscopic imaging using multi-task learning -- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors -- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network -- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts -- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images -- Towards Automatic Measurement of Type B Aortic Dissection Parameters -- Prediction of FFR from IVUS Images using Machine Learning -- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks -- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images -- Crowd disagreement about medical images is informative -- Imperfect Segmentation Labels: How Much Do They Matter? -- Crowdsourcing annotation of surgical instruments in videos of cataract surgery -- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling -- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans -- Capsule Networks against Medical Imaging Data Challenges -- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images -- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos -- Radiology Objects in COntext (ROCO) -- Improving out-of-sample prediction of quality of MRIQC. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings [documento electrónico] / Stoyanov, Danail, ; Taylor, Zeike, ; Balocco, Simone, ; Sznitman, Raphael, ; Martel, Anne, ; Maier-Hein, Lena, ; Duong, Luc, ; Zahnd, Guillaume, ; Demirci, Stefanie, ; Albarqouni, Shadi, ; Lee, Su-Lin, ; Moriconi, Stefano, ; Cheplygina, Veronika, ; Mateus, Diana, ; Trucco, Emanuele, ; Granger, Eric, ; Jannin, Pierre, . - 1 ed. . - [s.l.] : Springer, 2018 . - XVII, 202 p. 111 ilustraciones, 65 ilustraciones en color.
ISBN : 978-3-030-01364-6
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Informática Médica Visión por computador Ingeniería Informática y Redes Inteligencia artificial Informática de la Salud Red informática Ingeniería Informática Índice Dewey: 006.37 Visión artificial Resumen: Este libro constituye las actas conjuntas arbitradas del 7.º Taller internacional conjunto sobre computación y visualización para imágenes intravasculares y colocación de stents asistida por computadora, CVII-STENT 2018, y el Tercer taller internacional sobre anotación a gran escala de datos biomédicos y síntesis experta de etiquetas, LABELS 2018, celebrados conjuntamente con la 21.ª Conferencia internacional sobre imágenes médicas e intervención asistida por computadora, MICCAI 2018, en Granada, España, en septiembre de 2018. Los 9 artículos completos presentados en CVII-STENT 2017 y los 12 artículos completos presentados en LABELS 2017 fueron revisados y seleccionados cuidadosamente. Los artículos de CVII-STENT presentan el estado del arte en imágenes, tratamiento e intervención asistida por computadora en el campo de las intervenciones endovasculares. Los artículos de LABELS presentan una variedad de enfoques para abordar pocas etiquetas, desde el aprendizaje por transferencia hasta el crowdsourcing. Nota de contenido: Blood-flow estimation in the hepatic arteries based on 3D/2D angiography registration -- Automated quantification of blood flow velocity from time-resolved CT angiography -- Multiple device segmentation for fluoroscopic imaging using multi-task learning -- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors -- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network -- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts -- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images -- Towards Automatic Measurement of Type B Aortic Dissection Parameters -- Prediction of FFR from IVUS Images using Machine Learning -- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks -- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images -- Crowd disagreement about medical images is informative -- Imperfect Segmentation Labels: How Much Do They Matter? -- Crowdsourcing annotation of surgical instruments in videos of cataract surgery -- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling -- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans -- Capsule Networks against Medical Imaging Data Challenges -- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images -- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos -- Radiology Objects in COntext (ROCO) -- Improving out-of-sample prediction of quality of MRIQC. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting / Liao, Hongen ; Balocco, Simone ; Wang, Guijin ; Zhang, Feng ; Liu, Yongpan ; Ding, Zijian ; Duong, Luc ; Phellan, Renzo ; Zahnd, Guillaume ; Breininger, Katharina ; Albarqouni, Shadi ; Moriconi, Stefano ; Lee, Su-Lin ; Demirci, Stefanie
![]()
PermalinkSecond MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings / Albarqouni, Shadi ; Bakas, Spyridon ; Kamnitsas, Konstantinos ; Cardoso, M. Jorge ; Landman, Bennett ; Li, Wenqi ; Milletari, Fausto ; Rieke, Nicola ; Roth, Holger ; Xu, Daguang ; Xu, Ziyue
![]()
Permalink

