Información del autor
Autor Martins, Tiago |
Documentos disponibles escritos por este autor (2)
Crear una solicitud de compra Refinar búsqueda
Artificial Intelligence in Music, Sound, Art and Design / Romero, Juan ; Martins, Tiago ; RodrÃguez-Fernández, Nereida
TÃtulo : Artificial Intelligence in Music, Sound, Art and Design : 10th International Conference, EvoMUSART 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings / Tipo de documento: documento electrónico Autores: Romero, Juan, ; Martins, Tiago, ; RodrÃguez-Fernández, Nereida, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XIII, 492 p. 236 ilustraciones, 181 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-72914-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Ciencias de la Computación Aprendizaje automático Procesamiento de imágenes Visión por computador Inteligencia artificial IngenierÃa de software TeorÃa de la Computación Computadoras y Educación Imágenes por computadora visión reconocimiento de patrones y gráficos Clasificación: 40.151 Resumen: Este libro constituye las actas arbitradas de la 10.ª Conferencia Europea sobre Inteligencia Artificial en Música, Sonido, Arte y Diseño, EvoMUSART 2021, celebrada como parte de Evo* 2021, como evento virtual, en abril de 2021, ubicado conjuntamente con Evo* 2021. eventos, EvoCOP, EvoApplications y EuroGP. Los 24 artÃculos completos revisados ​​y los 7 artÃculos breves presentados en este libro fueron cuidadosamente revisados ​​y seleccionados entre 66 presentaciones. Cubren una amplia gama de temas y áreas de aplicación, incluidos enfoques generativos de la música y las artes visuales, el aprendizaje profundo y la arquitectura. Nota de contenido: Sculpture Inspired Musical Composition, One Possible Approach -- Network Bending: Expressive Manipulation of Deep Generative Models -- SyVMO: Synchronous Variable Markov Oracle for Modeling and Predicting Multi-Part Musical Structures -- Identification of Pure Painting Pigment Using Machine Learning Algorithms -- Evolving Neural Style Transfer Blends -- Evolving Image Enhancement Pipelines -- Genre Recognition from Symbolic Music with CNNs -- Axial Generation: A Concretism-Inspired Method for Synthesizing Highly Varied Artworks -- Interactive, Efficient and Creative Image Generation Using Compositional Pattern-Producing Networks -- Aesthetic Evaluation of Cellular Automata Configurations Using Spatial Complexity and Kolmogorov Complexity -- Auralization of Three-Dimensional Cellular Automata -- Chord Embeddings: Analyzing What They Capture and Their Role for Next Chord Prediction and Artist Attribute Prediction -- Convolutional Generative Adversarial Network, via Transfer Learning, for Traditional Scottish Music Generation -- The Enigma of Complexity -- SerumRNN: Step by Step Audio VST Effect Programming -- Parameter Tuning for Wavelet-Based Sound Event Detection Using Neural Networks -- Raga Recognition in Indian Classical Music Using Deep Learning -- The Simulated Emergence of Chord Function -- Incremental Evolution of Stylized Images -- Dissecting Neural Networks Filter Responses for Artistic Style Transfer -- A Fusion of Deep and Shallow Learning to Predict Genres Based on Instrument and Timbre Features -- A Multi-Objective Evolutionary Approach to Identify Relevant Audio Features for Music Segmentation -- Exploring the Effect of Sampling Strategy on Movement Generation with Generative Neural Networks -- "A Good Algorithm Does Not Steal - It Imitates": The Originality Report as a Means of Measuring when a Music Generation Algorithm Copies too Much -- From Music to Image - A Computational Creativity Approach -- "What is human?" A Turing Test for Artistic Creativity -- Mixed-InitiativeLevel Design with RL Brush -- Creating a Digital Mirror of Creative Practice -- An Application for Evolutionary Music Composition Using Autoencoders -- A Swarm Grammar-Based Approach to Virtual World Generation -- Co-Creative Drawing with One-Shot Generative Models. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 10th European Conference on Artificial Intelligence in Music, Sound, Art and Design, EvoMUSART 2021, held as part of Evo* 2021, as Virtual Event, in April 2021, co-located with the Evo* 2021 events, EvoCOP, EvoApplications, and EuroGP. The 24 revised full papers and 7 short papers presented in this book were carefully reviewed and selected from 66 submissions. They cover a wide range of topics and application areas, including generative approaches to music and visual art, deep learning, and architecture. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Artificial Intelligence in Music, Sound, Art and Design : 10th International Conference, EvoMUSART 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings / [documento electrónico] / Romero, Juan, ; Martins, Tiago, ; RodrÃguez-Fernández, Nereida, . - 1 ed. . - [s.l.] : Springer, 2021 . - XIII, 492 p. 236 ilustraciones, 181 ilustraciones en color.
ISBN : 978-3-030-72914-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Ciencias de la Computación Aprendizaje automático Procesamiento de imágenes Visión por computador Inteligencia artificial IngenierÃa de software TeorÃa de la Computación Computadoras y Educación Imágenes por computadora visión reconocimiento de patrones y gráficos Clasificación: 40.151 Resumen: Este libro constituye las actas arbitradas de la 10.ª Conferencia Europea sobre Inteligencia Artificial en Música, Sonido, Arte y Diseño, EvoMUSART 2021, celebrada como parte de Evo* 2021, como evento virtual, en abril de 2021, ubicado conjuntamente con Evo* 2021. eventos, EvoCOP, EvoApplications y EuroGP. Los 24 artÃculos completos revisados ​​y los 7 artÃculos breves presentados en este libro fueron cuidadosamente revisados ​​y seleccionados entre 66 presentaciones. Cubren una amplia gama de temas y áreas de aplicación, incluidos enfoques generativos de la música y las artes visuales, el aprendizaje profundo y la arquitectura. Nota de contenido: Sculpture Inspired Musical Composition, One Possible Approach -- Network Bending: Expressive Manipulation of Deep Generative Models -- SyVMO: Synchronous Variable Markov Oracle for Modeling and Predicting Multi-Part Musical Structures -- Identification of Pure Painting Pigment Using Machine Learning Algorithms -- Evolving Neural Style Transfer Blends -- Evolving Image Enhancement Pipelines -- Genre Recognition from Symbolic Music with CNNs -- Axial Generation: A Concretism-Inspired Method for Synthesizing Highly Varied Artworks -- Interactive, Efficient and Creative Image Generation Using Compositional Pattern-Producing Networks -- Aesthetic Evaluation of Cellular Automata Configurations Using Spatial Complexity and Kolmogorov Complexity -- Auralization of Three-Dimensional Cellular Automata -- Chord Embeddings: Analyzing What They Capture and Their Role for Next Chord Prediction and Artist Attribute Prediction -- Convolutional Generative Adversarial Network, via Transfer Learning, for Traditional Scottish Music Generation -- The Enigma of Complexity -- SerumRNN: Step by Step Audio VST Effect Programming -- Parameter Tuning for Wavelet-Based Sound Event Detection Using Neural Networks -- Raga Recognition in Indian Classical Music Using Deep Learning -- The Simulated Emergence of Chord Function -- Incremental Evolution of Stylized Images -- Dissecting Neural Networks Filter Responses for Artistic Style Transfer -- A Fusion of Deep and Shallow Learning to Predict Genres Based on Instrument and Timbre Features -- A Multi-Objective Evolutionary Approach to Identify Relevant Audio Features for Music Segmentation -- Exploring the Effect of Sampling Strategy on Movement Generation with Generative Neural Networks -- "A Good Algorithm Does Not Steal - It Imitates": The Originality Report as a Means of Measuring when a Music Generation Algorithm Copies too Much -- From Music to Image - A Computational Creativity Approach -- "What is human?" A Turing Test for Artistic Creativity -- Mixed-InitiativeLevel Design with RL Brush -- Creating a Digital Mirror of Creative Practice -- An Application for Evolutionary Music Composition Using Autoencoders -- A Swarm Grammar-Based Approach to Virtual World Generation -- Co-Creative Drawing with One-Shot Generative Models. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 10th European Conference on Artificial Intelligence in Music, Sound, Art and Design, EvoMUSART 2021, held as part of Evo* 2021, as Virtual Event, in April 2021, co-located with the Evo* 2021 events, EvoCOP, EvoApplications, and EuroGP. The 24 revised full papers and 7 short papers presented in this book were carefully reviewed and selected from 66 submissions. They cover a wide range of topics and application areas, including generative approaches to music and visual art, deep learning, and architecture. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Artificial Intelligence in Music, Sound, Art and Design / Romero, Juan ; Ekárt, Anikó ; Martins, Tiago ; Correia, João
TÃtulo : Artificial Intelligence in Music, Sound, Art and Design : 9th International Conference, EvoMUSART 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings / Tipo de documento: documento electrónico Autores: Romero, Juan, ; Ekárt, Anikó, ; Martins, Tiago, ; Correia, João, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2020 Número de páginas: XII, 227 p. 114 ilustraciones, 86 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-43859-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Ciencias de la Computación Red de computadoras Compiladores (programas informáticos) Procesamiento de imágenes Visión por computador Procesamiento de la señal TeorÃa de la Computación Redes de comunicación informática Compiladores e intérpretes Imágenes por computadora visión reconocimiento de patrones y gráficos Procesamiento de señales voz e imágenes Clasificación: 40.151 Resumen: Este libro constituye las actas arbitradas de la 9.ª Conferencia Europea sobre Inteligencia Artificial en Música, Sonido, Arte y Diseño, EvoMUSART 2020, celebrada como parte de Evo*2020, en Sevilla, España, en abril de 2020, ubicada conjuntamente con Evo* Eventos 2020 EuroGP, EvoCOP y EvoApplications. Los 15 artÃculos completos revisados ​​presentados fueron cuidadosamente revisados ​​y seleccionados entre 31 presentaciones. Los artÃculos cubren un amplio espectro de temas y áreas de aplicación, incluidos enfoques generativos de la música y las artes visuales, el aprendizaje profundo y la arquitectura. Nota de contenido: A deep learning neural network for classifying good and bad photos -- Adapting and Enhancing Evolutionary Art for Casual Creation -- Comparing Fuzzy Rule Based Approaches for Music Genre Classification -- Quantum Zentanglement: Combining Picbreeder and Wave Function Collapse to Create Zentangles -- Emerging Technology System Evolution -- Fusion of Hilbert-Huang Transform and Deep Convolutional Neural Network for Predominant Musical Instruments Recognition -- Genetic Reverb: Synthesizing Artificial Reverberant Fields Via Genetic Algorithms -- Portraits of No One: An Interactive Installation -- Understanding Aesthetic Evaluation with Deep Learning -- An Aesthetic-Based Fitness Measure and a Framework for Guidance of Evolutionary Design in Architecture -- Objective Evaluation of Tonal Fitness for Chord Progressions -- Coevolving Artistic Images Using OMNIREP -- Sound Cells in Genetic Improvisation: An Evolutionary Model for Improvised Music -- Controlling Self-Organization in Generative Creative Systems -- Emulation Games. See and Be Seen, a Subjective Approach to Analog Computational Neuroscience. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 9th European Conference on Artificial Intelligence in Music, Sound, Art and Design, EvoMUSART 2020, held as part of Evo*2020, in Seville, Spain, in April 2020, co-located with the Evo*2020 events EuroGP, EvoCOP and EvoApplications. The 15 revised full papers presented were carefully reviewed and selected from 31 submissions. The papers cover a wide spectrum of topics and application areas, including generative approaches to music and visual art, deep learning, and architecture. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Artificial Intelligence in Music, Sound, Art and Design : 9th International Conference, EvoMUSART 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings / [documento electrónico] / Romero, Juan, ; Ekárt, Anikó, ; Martins, Tiago, ; Correia, João, . - 1 ed. . - [s.l.] : Springer, 2020 . - XII, 227 p. 114 ilustraciones, 86 ilustraciones en color.
ISBN : 978-3-030-43859-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Ciencias de la Computación Red de computadoras Compiladores (programas informáticos) Procesamiento de imágenes Visión por computador Procesamiento de la señal TeorÃa de la Computación Redes de comunicación informática Compiladores e intérpretes Imágenes por computadora visión reconocimiento de patrones y gráficos Procesamiento de señales voz e imágenes Clasificación: 40.151 Resumen: Este libro constituye las actas arbitradas de la 9.ª Conferencia Europea sobre Inteligencia Artificial en Música, Sonido, Arte y Diseño, EvoMUSART 2020, celebrada como parte de Evo*2020, en Sevilla, España, en abril de 2020, ubicada conjuntamente con Evo* Eventos 2020 EuroGP, EvoCOP y EvoApplications. Los 15 artÃculos completos revisados ​​presentados fueron cuidadosamente revisados ​​y seleccionados entre 31 presentaciones. Los artÃculos cubren un amplio espectro de temas y áreas de aplicación, incluidos enfoques generativos de la música y las artes visuales, el aprendizaje profundo y la arquitectura. Nota de contenido: A deep learning neural network for classifying good and bad photos -- Adapting and Enhancing Evolutionary Art for Casual Creation -- Comparing Fuzzy Rule Based Approaches for Music Genre Classification -- Quantum Zentanglement: Combining Picbreeder and Wave Function Collapse to Create Zentangles -- Emerging Technology System Evolution -- Fusion of Hilbert-Huang Transform and Deep Convolutional Neural Network for Predominant Musical Instruments Recognition -- Genetic Reverb: Synthesizing Artificial Reverberant Fields Via Genetic Algorithms -- Portraits of No One: An Interactive Installation -- Understanding Aesthetic Evaluation with Deep Learning -- An Aesthetic-Based Fitness Measure and a Framework for Guidance of Evolutionary Design in Architecture -- Objective Evaluation of Tonal Fitness for Chord Progressions -- Coevolving Artistic Images Using OMNIREP -- Sound Cells in Genetic Improvisation: An Evolutionary Model for Improvised Music -- Controlling Self-Organization in Generative Creative Systems -- Emulation Games. See and Be Seen, a Subjective Approach to Analog Computational Neuroscience. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 9th European Conference on Artificial Intelligence in Music, Sound, Art and Design, EvoMUSART 2020, held as part of Evo*2020, in Seville, Spain, in April 2020, co-located with the Evo*2020 events EuroGP, EvoCOP and EvoApplications. The 15 revised full papers presented were carefully reviewed and selected from 31 submissions. The papers cover a wide spectrum of topics and application areas, including generative approaches to music and visual art, deep learning, and architecture. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]