TÃtulo : |
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions |
Tipo de documento: |
documento electrónico |
Autores: |
Argiento, Raffaele, ; Durante, Daniele, ; Wade, Sara, |
Mención de edición: |
1 ed. |
Editorial: |
[s.l.] : Springer |
Fecha de publicación: |
2019 |
Número de páginas: |
XI, 184 p. 40 ilustraciones, 29 ilustraciones en color. |
ISBN/ISSN/DL: |
978-3-030-30611-3 |
Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
Idioma : |
Inglés (eng) |
Palabras clave: |
EstadÃsticas BiometrÃa Simulación por ordenador TeorÃa y métodos estadÃsticos. EstadÃstica y Computación EstadÃstica en Negocios Gestión EconomÃa Finanzas Seguros BioestadÃstica Modelado por computadora |
Clasificación: |
519.5 |
Resumen: |
Este libro presenta una selección de contribuciones revisadas por pares a la cuarta Reunión Bayesiana de Jóvenes EstadÃsticos, BAYSM 2018, celebrada en la Universidad de Warwick los dÃas 2 y 3 de julio de 2018. La reunión brindó una valiosa oportunidad para jóvenes investigadores, estudiantes de maestrÃa, estudiantes de doctorado, y postdoctorados interesados ​​en estadÃsticas bayesianas para conectarse con la comunidad bayesiana en general. Las actas ofrecen artÃculos de vanguardia sobre una amplia gama de temas de la estadÃstica bayesiana, identifican desafÃos importantes e investigan enfoques metodológicos prometedores, al mismo tiempo que evalúan métodos actuales y aplicaciones estimulantes. El libro está dirigido a una amplia audiencia de estadÃsticos y demuestra cómo los aspectos teóricos, metodológicos y computacionales a menudo se combinan en el marco bayesiano para abordar con éxito problemas complejos. |
Nota de contenido: |
Part I – Theory and Methods: A. Diana, J. Griffin, and E. Matechou, A Polya Tree Based Model for Unmarked Individuals in an Open Wildlife Population -- S. Haque and K. Mengersen, Bias Estimation and Correction Using Bootstrap Simulation of the Linking Process -- N. Laitonjam and N. Hurley, Non-parametric Overlapping Community Detection -- L. Fee Schneider, T. Staudt, and A. Munk, Posterior Consistency in the Binomial Model with Unknown Parameters: A Numerical Study -- C. Spire and D. Chakrabarty, Learning in the Absence of Training Data - a Galactic Application -- D. Tait and B. Worton, Multiplicative Latent Force Models -- PART II – Computational Statistics: N. Cunningham, J. E. Griffin, D. L. Wild, and A. Lee, particleMDI: A Julia Package for the Integrative Cluster Analysis of Multiple Datasets -- D. Hosszejni and G. Kastner, Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage -- B. Karimi and M. Lavielle, Efficient Metropolis-Hastings Sampling for Nonlinear Mixed Effects Models -- G. Kratzer, Reinhard Furrer, and Pittavino Marta. Comparison Between Suitable Priors for Additive Bayesian Networks -- I. Peneva and R. Savage, A Bayesian Nonparametric Model for Integrative Clustering of Omics Data -- I. Schwabe, Bayesian Inference of Interaction Effects in Item-Level Hierarchical Twin Data -- PART III – Applied Statistics: K. Brock, L. Billingham, C. Yap, and G. Middleton, A Phase II Clinical Trial Design for Associated Co-Primary Efficacy and Toxicity Outcomes with Baseline Covariates -- E. Lanzarone, E. Scalco, A. Mastropietro, S. Marzi, and G. Rizzo, A Conditional Autoregressive Model for estimating Slow and Fast Diffusion from Magnetic Resonance Images -- D. Rocha, M. Scotto, C. Pinto, J. Nuno Tavares, and S. Gouveia, Simulation Study of HIV Temporal Patterns Using Bayesian Methodology -- A. Shenvi, J. Smith, R. Walton, and S. Eldridge, Modelling with Non-Stratified Chain Event Graphs -- O. Stevenson and B.Brewer, Modelling Career Trajectories of Cricket Players Using Gaussian Processes -- F. Turner, R. Wilkinson, C. Buck, J. Jones, and L. Sime, Ice Cores and Emulation: Learning More About Past Ice Sheet Shapes. |
Tipo de medio : |
Computadora |
Summary : |
This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems. |
Enlace de acceso : |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions [documento electrónico] / Argiento, Raffaele, ; Durante, Daniele, ; Wade, Sara, . - 1 ed. . - [s.l.] : Springer, 2019 . - XI, 184 p. 40 ilustraciones, 29 ilustraciones en color. ISBN : 978-3-030-30611-3 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés ( eng)
Palabras clave: |
EstadÃsticas BiometrÃa Simulación por ordenador TeorÃa y métodos estadÃsticos. EstadÃstica y Computación EstadÃstica en Negocios Gestión EconomÃa Finanzas Seguros BioestadÃstica Modelado por computadora |
Clasificación: |
519.5 |
Resumen: |
Este libro presenta una selección de contribuciones revisadas por pares a la cuarta Reunión Bayesiana de Jóvenes EstadÃsticos, BAYSM 2018, celebrada en la Universidad de Warwick los dÃas 2 y 3 de julio de 2018. La reunión brindó una valiosa oportunidad para jóvenes investigadores, estudiantes de maestrÃa, estudiantes de doctorado, y postdoctorados interesados ​​en estadÃsticas bayesianas para conectarse con la comunidad bayesiana en general. Las actas ofrecen artÃculos de vanguardia sobre una amplia gama de temas de la estadÃstica bayesiana, identifican desafÃos importantes e investigan enfoques metodológicos prometedores, al mismo tiempo que evalúan métodos actuales y aplicaciones estimulantes. El libro está dirigido a una amplia audiencia de estadÃsticos y demuestra cómo los aspectos teóricos, metodológicos y computacionales a menudo se combinan en el marco bayesiano para abordar con éxito problemas complejos. |
Nota de contenido: |
Part I – Theory and Methods: A. Diana, J. Griffin, and E. Matechou, A Polya Tree Based Model for Unmarked Individuals in an Open Wildlife Population -- S. Haque and K. Mengersen, Bias Estimation and Correction Using Bootstrap Simulation of the Linking Process -- N. Laitonjam and N. Hurley, Non-parametric Overlapping Community Detection -- L. Fee Schneider, T. Staudt, and A. Munk, Posterior Consistency in the Binomial Model with Unknown Parameters: A Numerical Study -- C. Spire and D. Chakrabarty, Learning in the Absence of Training Data - a Galactic Application -- D. Tait and B. Worton, Multiplicative Latent Force Models -- PART II – Computational Statistics: N. Cunningham, J. E. Griffin, D. L. Wild, and A. Lee, particleMDI: A Julia Package for the Integrative Cluster Analysis of Multiple Datasets -- D. Hosszejni and G. Kastner, Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage -- B. Karimi and M. Lavielle, Efficient Metropolis-Hastings Sampling for Nonlinear Mixed Effects Models -- G. Kratzer, Reinhard Furrer, and Pittavino Marta. Comparison Between Suitable Priors for Additive Bayesian Networks -- I. Peneva and R. Savage, A Bayesian Nonparametric Model for Integrative Clustering of Omics Data -- I. Schwabe, Bayesian Inference of Interaction Effects in Item-Level Hierarchical Twin Data -- PART III – Applied Statistics: K. Brock, L. Billingham, C. Yap, and G. Middleton, A Phase II Clinical Trial Design for Associated Co-Primary Efficacy and Toxicity Outcomes with Baseline Covariates -- E. Lanzarone, E. Scalco, A. Mastropietro, S. Marzi, and G. Rizzo, A Conditional Autoregressive Model for estimating Slow and Fast Diffusion from Magnetic Resonance Images -- D. Rocha, M. Scotto, C. Pinto, J. Nuno Tavares, and S. Gouveia, Simulation Study of HIV Temporal Patterns Using Bayesian Methodology -- A. Shenvi, J. Smith, R. Walton, and S. Eldridge, Modelling with Non-Stratified Chain Event Graphs -- O. Stevenson and B.Brewer, Modelling Career Trajectories of Cricket Players Using Gaussian Processes -- F. Turner, R. Wilkinson, C. Buck, J. Jones, and L. Sime, Ice Cores and Emulation: Learning More About Past Ice Sheet Shapes. |
Tipo de medio : |
Computadora |
Summary : |
This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems. |
Enlace de acceso : |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
|  |