Información del autor
Autor Reddy, P. Krishna |
Documentos disponibles escritos por este autor (8)



25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part I / Karlapalem, Kamal ; Cheng, Hong ; Ramakrishnan, Naren ; Agrawal, R. K. ; Reddy, P. Krishna ; Srivastava, Jaideep ; Chakraborty, Tanmoy
![]()
TÃtulo : 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part I Tipo de documento: documento electrónico Autores: Karlapalem, Kamal, ; Cheng, Hong, ; Ramakrishnan, Naren, ; Agrawal, R. K., ; Reddy, P. Krishna, ; Srivastava, Jaideep, ; Chakraborty, Tanmoy, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XXXV, 834 p. 30 ilustraciones ISBN/ISSN/DL: 978-3-030-75762-5 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Inteligencia artificial Procesamiento de datos Ciencias sociales Red de computadoras Algoritmos MinerÃa de datos y descubrimiento de conocimientos Aplicación informática en ciencias sociales y del comportamiento Redes de comunicación informática Diseño y Análisis de Algoritmos Clasificación: Resumen: El conjunto de tres volúmenes LNAI 12712-12714 constituye las actas de la 25.ª Conferencia de Asia PacÃfico sobre avances en el descubrimiento de conocimientos y la minerÃa de datos, PAKDD 2021, que se celebró del 11 al 14 de mayo de 2021. Los 157 artÃculos incluidos en las actas fueron cuidadosamente revisado y seleccionado de un total de 628 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: Parte I: Aplicaciones del descubrimiento de conocimientos y extracción de datos especializados; Parte II: MinerÃa de datos clásica; teorÃa y principios de minerÃa de datos; sistemas de recomendación; y análisis de texto; Parte III: Aprendizaje e incorporación de representaciones, y aprendizaje a partir de datos. Nota de contenido: Applications of Knowledge Discovery -- Fuzzy World:A Tool Training Agent from Concept Cognitive to Logic Inference -- Collaborative Reinforcement Learning Framework to Model Evolution of Cooperation in Sequential Social Dilemmas -- SIGTRAN: Signature Vectors for Detecting Illicit Activities in Blockchain Transaction Networks -- VOA*: Fast Angle-Based Outlier Detection Over High-Dimensional Data Streams -- Learning Probabilistic Latent Structure for Outlier Detection from Multi-View Data -- GLAD-PAW: Graph-based Log Anomaly Detection by Position Aware Weighted Graph Attention Network -- CubeFlow: Money Laundering Detection with Coupled Tensors -- Unsupervised Boosting-based Autoencoder Ensembles for Outlier Detection -- Unsupervised Domain Adaptation for 3D Medical Image with High Efficiency -- A Hierarchical Structure-Aware Embedding Method for Predicting Phenotype-Gene Associations -- Autonomous Vehicle Path Prediction using Conditional Variational Autoencoder Networks -- Heterogeneous Graph Attention Network for Small and Medium-sized Enterprises Bankruptcy Prediction -- Algorithm Selection as Superset Learning: Constructing Algorithm Selectors from Imprecise Performance Data -- Sim2Real for Metagenomes: Accelerating Animal Diagnostics with Adversarial Co-Training -- Attack Is the Best Defense: A Multi-Mode Poisoning PUF against Machine Learning Attacks -- Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets -- TLife-LSTM: Forecasting Future COVID-19 Progression with Topological Signatures of Atmospheric Conditions -- Lifelong Learning based Disease Diagnosis on Clinical Notes -- GrabQC: Graph based Query Contextualization for automated ICD coding -- Deep Gaussian Mixture Model on Multiple Interpretable Features of Fetal Heart Rate for Pregnancy Wellness -- Adverse Drug Events Detection, Extraction and Normalization from Online Comments of Chinese Patent Medicines -- Adaptive Graph Co-Attention Networks for Traffic Forecasting -- Dual-Stage Bayesian Sequence to Sequence Embeddings for Energy Demand Forecasting -- AA-LSTM: An Adversarial Autoencoder Joint Model for Prediction of Equipment Remaining Useful Life -- Data Mining of Specialized Data -- Analyzing Topic Transitions in Text-based Social Cascades using Dual-Network Hawkes Process -- HiPaR: Hierarchical Pattern-Aided Regression -- Improved Topology Extraction using Discriminative Parameter Mining of Logs -- Back to Prior Knowledge: Joint Event Causality Extraction via Convolutional Semantic Infusion -- A k-MCST based Algorithm for Discovering Core-Periphery Structures in Graphs -- Detecting Sequentially Novel Classes with Stable Generalization Ability -- Learning-based Dynamic Graph Stream Sketch -- Discovering Dense Correlated Subgraphs in Dynamic Networks -- Fake News Detection with Heterogenous Deep Graph Convolutional Network -- Incrementally Finding the Vertices Absent from the Maximum Independent Sets -- Neighbours and Kinsmen: HatefulUsers Detection with Graph Neural Network -- Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs -- A Meta-path based Graph Convolutional Network with Multi-Scale Semantic Extractions for Heterogeneous Event Classification -- Noise-Enhanced Unsupervised Link Prediction -- Weak Supervision Network Embedding for Constrained Graph Learning -- RAGA: Relation-aware Graph Attention Networks for Global Entity Alignment -- Graph Attention Networks with Positional Embeddings -- Unified Robust Training for Graph Neural Networks against Label Noise -- Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs -- A Deep Hybrid Pooling Architecture for Graph Classification with Hierarchical Attention -- Maximizing Explainability with SF-Lasso and Selective Inference for Video and Picture Ads. -Reliably Calibrated Isotonic Regression -- Multiple Instance Learning for Unilateral Data -- An Online Learning Algorithm for Non-Stationary Imbalanced Data by Extra-Charging Minority Class -- Locally Linear Support Vector Machines for Imbalanced Data Classification. - Low-Dimensional Representation Learning from Imbalanced Data Streams -- PhotoStylist: Altering the Style of Photos based on the Connotations of Texts -- Gazetteer-Guided Keyphrase Generation from Research Papers -- Minits-AllOcc: An Efficient Algorithm for Mining Timed Sequential Patterns -- T^3N: Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter -- AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection -- SCARLET: Explainable Attention based Graph Neural Network for Fake News spreader prediction -- Content matters: A GNN-based Model Combined with Text Semantics for Social Network Cascade Prediction -- TERMCast: Temporal Relation Modeling for Effective Urban Flow Forecasting -- Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-hailing Demand Forecasting -- A Proximity Forest for Multivariate Time Series Classification -- C²-Guard: A Cross-Correlation Gaining Framework for Urban Air Quality Prediction -- Simultaneous multiple POI population patternanalysis system with HDP mixture regression -- Interpretable Feature Construction for Time Series Extrinsic Regression -- SEPC: Improving Joint Extraction of Entities and Relations by Strengthening Entity Pairs Connection. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part I [documento electrónico] / Karlapalem, Kamal, ; Cheng, Hong, ; Ramakrishnan, Naren, ; Agrawal, R. K., ; Reddy, P. Krishna, ; Srivastava, Jaideep, ; Chakraborty, Tanmoy, . - 1 ed. . - [s.l.] : Springer, 2021 . - XXXV, 834 p. 30 ilustraciones.
ISBN : 978-3-030-75762-5
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Inteligencia artificial Procesamiento de datos Ciencias sociales Red de computadoras Algoritmos MinerÃa de datos y descubrimiento de conocimientos Aplicación informática en ciencias sociales y del comportamiento Redes de comunicación informática Diseño y Análisis de Algoritmos Clasificación: Resumen: El conjunto de tres volúmenes LNAI 12712-12714 constituye las actas de la 25.ª Conferencia de Asia PacÃfico sobre avances en el descubrimiento de conocimientos y la minerÃa de datos, PAKDD 2021, que se celebró del 11 al 14 de mayo de 2021. Los 157 artÃculos incluidos en las actas fueron cuidadosamente revisado y seleccionado de un total de 628 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: Parte I: Aplicaciones del descubrimiento de conocimientos y extracción de datos especializados; Parte II: MinerÃa de datos clásica; teorÃa y principios de minerÃa de datos; sistemas de recomendación; y análisis de texto; Parte III: Aprendizaje e incorporación de representaciones, y aprendizaje a partir de datos. Nota de contenido: Applications of Knowledge Discovery -- Fuzzy World:A Tool Training Agent from Concept Cognitive to Logic Inference -- Collaborative Reinforcement Learning Framework to Model Evolution of Cooperation in Sequential Social Dilemmas -- SIGTRAN: Signature Vectors for Detecting Illicit Activities in Blockchain Transaction Networks -- VOA*: Fast Angle-Based Outlier Detection Over High-Dimensional Data Streams -- Learning Probabilistic Latent Structure for Outlier Detection from Multi-View Data -- GLAD-PAW: Graph-based Log Anomaly Detection by Position Aware Weighted Graph Attention Network -- CubeFlow: Money Laundering Detection with Coupled Tensors -- Unsupervised Boosting-based Autoencoder Ensembles for Outlier Detection -- Unsupervised Domain Adaptation for 3D Medical Image with High Efficiency -- A Hierarchical Structure-Aware Embedding Method for Predicting Phenotype-Gene Associations -- Autonomous Vehicle Path Prediction using Conditional Variational Autoencoder Networks -- Heterogeneous Graph Attention Network for Small and Medium-sized Enterprises Bankruptcy Prediction -- Algorithm Selection as Superset Learning: Constructing Algorithm Selectors from Imprecise Performance Data -- Sim2Real for Metagenomes: Accelerating Animal Diagnostics with Adversarial Co-Training -- Attack Is the Best Defense: A Multi-Mode Poisoning PUF against Machine Learning Attacks -- Combining exogenous and endogenous signals with a semi-supervised co-attention network for early detection of COVID-19 fake tweets -- TLife-LSTM: Forecasting Future COVID-19 Progression with Topological Signatures of Atmospheric Conditions -- Lifelong Learning based Disease Diagnosis on Clinical Notes -- GrabQC: Graph based Query Contextualization for automated ICD coding -- Deep Gaussian Mixture Model on Multiple Interpretable Features of Fetal Heart Rate for Pregnancy Wellness -- Adverse Drug Events Detection, Extraction and Normalization from Online Comments of Chinese Patent Medicines -- Adaptive Graph Co-Attention Networks for Traffic Forecasting -- Dual-Stage Bayesian Sequence to Sequence Embeddings for Energy Demand Forecasting -- AA-LSTM: An Adversarial Autoencoder Joint Model for Prediction of Equipment Remaining Useful Life -- Data Mining of Specialized Data -- Analyzing Topic Transitions in Text-based Social Cascades using Dual-Network Hawkes Process -- HiPaR: Hierarchical Pattern-Aided Regression -- Improved Topology Extraction using Discriminative Parameter Mining of Logs -- Back to Prior Knowledge: Joint Event Causality Extraction via Convolutional Semantic Infusion -- A k-MCST based Algorithm for Discovering Core-Periphery Structures in Graphs -- Detecting Sequentially Novel Classes with Stable Generalization Ability -- Learning-based Dynamic Graph Stream Sketch -- Discovering Dense Correlated Subgraphs in Dynamic Networks -- Fake News Detection with Heterogenous Deep Graph Convolutional Network -- Incrementally Finding the Vertices Absent from the Maximum Independent Sets -- Neighbours and Kinsmen: HatefulUsers Detection with Graph Neural Network -- Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs -- A Meta-path based Graph Convolutional Network with Multi-Scale Semantic Extractions for Heterogeneous Event Classification -- Noise-Enhanced Unsupervised Link Prediction -- Weak Supervision Network Embedding for Constrained Graph Learning -- RAGA: Relation-aware Graph Attention Networks for Global Entity Alignment -- Graph Attention Networks with Positional Embeddings -- Unified Robust Training for Graph Neural Networks against Label Noise -- Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs -- A Deep Hybrid Pooling Architecture for Graph Classification with Hierarchical Attention -- Maximizing Explainability with SF-Lasso and Selective Inference for Video and Picture Ads. -Reliably Calibrated Isotonic Regression -- Multiple Instance Learning for Unilateral Data -- An Online Learning Algorithm for Non-Stationary Imbalanced Data by Extra-Charging Minority Class -- Locally Linear Support Vector Machines for Imbalanced Data Classification. - Low-Dimensional Representation Learning from Imbalanced Data Streams -- PhotoStylist: Altering the Style of Photos based on the Connotations of Texts -- Gazetteer-Guided Keyphrase Generation from Research Papers -- Minits-AllOcc: An Efficient Algorithm for Mining Timed Sequential Patterns -- T^3N: Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter -- AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection -- SCARLET: Explainable Attention based Graph Neural Network for Fake News spreader prediction -- Content matters: A GNN-based Model Combined with Text Semantics for Social Network Cascade Prediction -- TERMCast: Temporal Relation Modeling for Effective Urban Flow Forecasting -- Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-hailing Demand Forecasting -- A Proximity Forest for Multivariate Time Series Classification -- C²-Guard: A Cross-Correlation Gaining Framework for Urban Air Quality Prediction -- Simultaneous multiple POI population patternanalysis system with HDP mixture regression -- Interpretable Feature Construction for Time Series Extrinsic Regression -- SEPC: Improving Joint Extraction of Entities and Relations by Strengthening Entity Pairs Connection. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part II / Karlapalem, Kamal ; Cheng, Hong ; Ramakrishnan, Naren ; Agrawal, R. K. ; Reddy, P. Krishna ; Srivastava, Jaideep ; Chakraborty, Tanmoy
![]()
TÃtulo : 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part II Tipo de documento: documento electrónico Autores: Karlapalem, Kamal, ; Cheng, Hong, ; Ramakrishnan, Naren, ; Agrawal, R. K., ; Reddy, P. Krishna, ; Srivastava, Jaideep, ; Chakraborty, Tanmoy, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XXVI, 774 p. 30 ilustraciones ISBN/ISSN/DL: 978-3-030-75765-6 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Inteligencia artificial Ciencias sociales Software de la aplicacion Procesamiento de imágenes Visión por computador Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Aplicaciones informáticas y de sistemas de información Imágenes por computadora visión reconocimiento de patrones y gráficos Clasificación: Resumen: El conjunto de tres volúmenes LNAI 12712-12714 constituye las actas de la 25.ª Conferencia de Asia PacÃfico sobre avances en el descubrimiento de conocimientos y la minerÃa de datos, PAKDD 2021, que se celebró del 11 al 14 de mayo de 2021. Los 157 artÃculos incluidos en las actas fueron cuidadosamente revisado y seleccionado de un total de 628 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: Parte I: Aplicaciones del descubrimiento de conocimientos y extracción de datos especializados; Parte II: MinerÃa de datos clásica; teorÃa y principios de minerÃa de datos; sistemas de recomendación; y análisis de texto; Parte III: Aprendizaje e incorporación de representaciones, y aprendizaje a partir de datos. Nota de contenido: Classical Data Mining,. Mining Frequent Patterns from Hypergraph Databases -- Discriminating Frequent Pattern based Supervised Graph Embedding for Classification -- Mining Sequential Patterns in Uncertain Databases Using Hierarchical Index Structure -- Similarity Forest Revisited: a Swiss Army Knife for Machine Learning -- Discriminative Representation Learning for Cross-domain Sentiment Classification -- SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification -- Hierarchical Learning of Dependent Concepts for Human Activity Recognition -- Improving Short Text Classification Using Context-Sensitive Representations and Content-Aware Extended Topic Knowledge -- A Novel Method for Offline Handwritten Chinese Character Recognition under the Guidance of Print -- Upgraded Attention-based Local FeatureLearning Block for speech emotion recognition -- Memorization in Deep Neural Networks: Does the Loss Function matter -- Gaussian Soft Decision Trees for Interpretable Feature-Based Classification -- Efficient Nodes Representation Learning with Residual Feature Propagation -- Progressive AutoSpeech: An efficient and general framework for automatic speech classification -- CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific Perturbations for Tabular Data -- Effective and Adaptive Multi-metric Refined Similarity Graph Fusion for Multi-view Clustering -- aHCQ: Adaptive Hierarchical Clustering based Quantization Framework for Deep Neural Networks -- Maintaining Consistency with Constraints: a Constrained Deep Clustering method -- Data Mining Theory and Principles -- Towards multi-label Feature selection by Instance and Label Selections -- FARF: A Fair and Adaptive Random Forests Classifier -- Sparse Spectrum Gaussian Process for Bayesian Optimization -- Densely Connected Graph Attention Network based on Iterative Path Reasoning for Document-level Relation Extraction -- Causal Inference Using Global Forecasting Models for Counterfactual Prediction. -CED-BGFN: Chinese Event Detection via Bidirectional Glyph-aware Dynamic Fusion Network -- Learning Finite Automata with Shuffle -- Active Learning based Similarity Filtering for Efficient and Effective Record Linkage -- Stratified Sampling for Extreme Multi-Label Data -- Vertical Federated Learning for Higher-order Factorization Machines -- dK-Projection: Publishing Graph Joint degree distribution with Node Differential Privacy -- Recommender Systems -- Improving Sequential Recommendation with Attribute-augmented Graph Neural Networks -- Exploring Implicit Relationships in Social Network for Recommendation Systems -- Transferable Contextual Bandits with Prior Observations -- Modeling Hierarchical Intents and Selective Current Interest for Session-based Recommendation -- A Finetuned language model for Recommending cQA-QAs for enriching Textbooks -- XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction -- Learning Multiclass Classifier Under Noisy Bandit Feedback -- Diversify orNot: Dynamic Diversification for Personalized Recommendation -- Multi-criteria and Review-based Overall Rating Prediction -- W2FM: The Doubly-Warped Factorization Machine -- Causal Combinatorial Factorization Machines for Set-wise Recommendation -- Transformer-based Multi-task Learning for Queuing Time Aware Next POI Recommendation -- Joint Modeling Dynamic Preferences of Users and Items Using Reviews for Sequential Recommendation -- Box4Rec: Box Embedding for Sequential Recommendation -- UKIRF: An Item Rejection Framework for Improving Negative Items Sampling in One-Class Collaborative Filtering -- IACN: Influence-aware and Attention-based Co-evolutionary Network for Recommendation -- Nonlinear Matrix Factorization via Neighbor Embedding -- Deconfounding representation learning based on user interactions in Recommendation Systems -- Personalized Regularization Learning for Fairer Matrix Factorization -- Instance Selection for Online Updating in Dynamic Recommender Environments -- Text Analytics.-Fusing Essential Knowledge for Text-Based Open-Domain Question Answering. - TSSE-DMM: Topic Modeling for Short Texts based on Topic Subdivision and Semantic Enhancement -- SILVER: Generating Persuasive Chinese Product Pitch -- Capturing SQL Query Overlapping via SubtreeCopy for Cross-domain Context-dependent SQLGeneration -- HScodeNet: Combining Hierarchical Sequential and Global Spatial Information of Text for Commodity HS Code Classification -- PLVCG: A Pretraining Based Model for Live Video Comment Generation -- Inducing Rich Interaction Structures between Words for Document-level Event Argument Extraction -- Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking -- TANTP: Conversational Emotion Recognition Using Tree-Based Attention Networks with Transformer Pre-training -- Semantic-syntax Cascade Injection Model for Aspect Sentiment Triple Extraction -- Modeling Inter-Aspect Relationship with Conjunction for Aspect-based Sentiment Analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part II [documento electrónico] / Karlapalem, Kamal, ; Cheng, Hong, ; Ramakrishnan, Naren, ; Agrawal, R. K., ; Reddy, P. Krishna, ; Srivastava, Jaideep, ; Chakraborty, Tanmoy, . - 1 ed. . - [s.l.] : Springer, 2021 . - XXVI, 774 p. 30 ilustraciones.
ISBN : 978-3-030-75765-6
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Inteligencia artificial Ciencias sociales Software de la aplicacion Procesamiento de imágenes Visión por computador Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Aplicaciones informáticas y de sistemas de información Imágenes por computadora visión reconocimiento de patrones y gráficos Clasificación: Resumen: El conjunto de tres volúmenes LNAI 12712-12714 constituye las actas de la 25.ª Conferencia de Asia PacÃfico sobre avances en el descubrimiento de conocimientos y la minerÃa de datos, PAKDD 2021, que se celebró del 11 al 14 de mayo de 2021. Los 157 artÃculos incluidos en las actas fueron cuidadosamente revisado y seleccionado de un total de 628 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: Parte I: Aplicaciones del descubrimiento de conocimientos y extracción de datos especializados; Parte II: MinerÃa de datos clásica; teorÃa y principios de minerÃa de datos; sistemas de recomendación; y análisis de texto; Parte III: Aprendizaje e incorporación de representaciones, y aprendizaje a partir de datos. Nota de contenido: Classical Data Mining,. Mining Frequent Patterns from Hypergraph Databases -- Discriminating Frequent Pattern based Supervised Graph Embedding for Classification -- Mining Sequential Patterns in Uncertain Databases Using Hierarchical Index Structure -- Similarity Forest Revisited: a Swiss Army Knife for Machine Learning -- Discriminative Representation Learning for Cross-domain Sentiment Classification -- SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification -- Hierarchical Learning of Dependent Concepts for Human Activity Recognition -- Improving Short Text Classification Using Context-Sensitive Representations and Content-Aware Extended Topic Knowledge -- A Novel Method for Offline Handwritten Chinese Character Recognition under the Guidance of Print -- Upgraded Attention-based Local FeatureLearning Block for speech emotion recognition -- Memorization in Deep Neural Networks: Does the Loss Function matter -- Gaussian Soft Decision Trees for Interpretable Feature-Based Classification -- Efficient Nodes Representation Learning with Residual Feature Propagation -- Progressive AutoSpeech: An efficient and general framework for automatic speech classification -- CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific Perturbations for Tabular Data -- Effective and Adaptive Multi-metric Refined Similarity Graph Fusion for Multi-view Clustering -- aHCQ: Adaptive Hierarchical Clustering based Quantization Framework for Deep Neural Networks -- Maintaining Consistency with Constraints: a Constrained Deep Clustering method -- Data Mining Theory and Principles -- Towards multi-label Feature selection by Instance and Label Selections -- FARF: A Fair and Adaptive Random Forests Classifier -- Sparse Spectrum Gaussian Process for Bayesian Optimization -- Densely Connected Graph Attention Network based on Iterative Path Reasoning for Document-level Relation Extraction -- Causal Inference Using Global Forecasting Models for Counterfactual Prediction. -CED-BGFN: Chinese Event Detection via Bidirectional Glyph-aware Dynamic Fusion Network -- Learning Finite Automata with Shuffle -- Active Learning based Similarity Filtering for Efficient and Effective Record Linkage -- Stratified Sampling for Extreme Multi-Label Data -- Vertical Federated Learning for Higher-order Factorization Machines -- dK-Projection: Publishing Graph Joint degree distribution with Node Differential Privacy -- Recommender Systems -- Improving Sequential Recommendation with Attribute-augmented Graph Neural Networks -- Exploring Implicit Relationships in Social Network for Recommendation Systems -- Transferable Contextual Bandits with Prior Observations -- Modeling Hierarchical Intents and Selective Current Interest for Session-based Recommendation -- A Finetuned language model for Recommending cQA-QAs for enriching Textbooks -- XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction -- Learning Multiclass Classifier Under Noisy Bandit Feedback -- Diversify orNot: Dynamic Diversification for Personalized Recommendation -- Multi-criteria and Review-based Overall Rating Prediction -- W2FM: The Doubly-Warped Factorization Machine -- Causal Combinatorial Factorization Machines for Set-wise Recommendation -- Transformer-based Multi-task Learning for Queuing Time Aware Next POI Recommendation -- Joint Modeling Dynamic Preferences of Users and Items Using Reviews for Sequential Recommendation -- Box4Rec: Box Embedding for Sequential Recommendation -- UKIRF: An Item Rejection Framework for Improving Negative Items Sampling in One-Class Collaborative Filtering -- IACN: Influence-aware and Attention-based Co-evolutionary Network for Recommendation -- Nonlinear Matrix Factorization via Neighbor Embedding -- Deconfounding representation learning based on user interactions in Recommendation Systems -- Personalized Regularization Learning for Fairer Matrix Factorization -- Instance Selection for Online Updating in Dynamic Recommender Environments -- Text Analytics.-Fusing Essential Knowledge for Text-Based Open-Domain Question Answering. - TSSE-DMM: Topic Modeling for Short Texts based on Topic Subdivision and Semantic Enhancement -- SILVER: Generating Persuasive Chinese Product Pitch -- Capturing SQL Query Overlapping via SubtreeCopy for Cross-domain Context-dependent SQLGeneration -- HScodeNet: Combining Hierarchical Sequential and Global Spatial Information of Text for Commodity HS Code Classification -- PLVCG: A Pretraining Based Model for Live Video Comment Generation -- Inducing Rich Interaction Structures between Words for Document-level Event Argument Extraction -- Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking -- TANTP: Conversational Emotion Recognition Using Tree-Based Attention Networks with Transformer Pre-training -- Semantic-syntax Cascade Injection Model for Aspect Sentiment Triple Extraction -- Modeling Inter-Aspect Relationship with Conjunction for Aspect-based Sentiment Analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part III / Karlapalem, Kamal ; Cheng, Hong ; Ramakrishnan, Naren ; Agrawal, R. K. ; Reddy, P. Krishna ; Srivastava, Jaideep ; Chakraborty, Tanmoy
![]()
TÃtulo : 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part III Tipo de documento: documento electrónico Autores: Karlapalem, Kamal, ; Cheng, Hong, ; Ramakrishnan, Naren, ; Agrawal, R. K., ; Reddy, P. Krishna, ; Srivastava, Jaideep, ; Chakraborty, Tanmoy, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XXIII, 434 p. 142 ilustraciones, 117 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-75768-7 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Inteligencia artificial Ciencias sociales Algoritmos Informática Visión por computador Aplicación informática en ciencias sociales y del comportamiento Diseño y Análisis de Algoritmos Computadoras y Educación Matemáticas de la Computación Clasificación: Resumen: El conjunto de tres volúmenes LNAI 12712-12714 constituye las actas de la 25.ª Conferencia de Asia PacÃfico sobre avances en el descubrimiento de conocimientos y la minerÃa de datos, PAKDD 2021, que se celebró del 11 al 14 de mayo de 2021. Los 157 artÃculos incluidos en las actas fueron cuidadosamente revisado y seleccionado de un total de 628 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: Parte I: Aplicaciones del descubrimiento de conocimientos y extracción de datos especializados; Parte II: MinerÃa de datos clásica; teorÃa y principios de minerÃa de datos; sistemas de recomendación; y análisis de texto; Parte III: Aprendizaje e incorporación de representaciones, y aprendizaje a partir de datos. Nota de contenido: Representation Learning and Embedding -- Episode Adaptive Embedding Networks for Few-shot Learning -- Universal Representation for Code -- Self-supervised Adaptive Aggregator Learning on Graph -- A Fast Algorithm for Simultaneous Sparse Approximation -- STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation Learning -- RW-GCN: Training Graph Convolution Networks with biased random walk for Semi-Supervised Classification -- Loss-aware Pattern Inference: A Correction on the Wrongly Claimed Limitations of Embedding Models -- SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network -- VIKING: Adversarial Attack on Network Embeddings via Supervised Network Poisoning -- Self-supervised Graph Representation Learning with Variational Inference -- Manifold Approximation and Projection by Maximizing Graph Information -- Learning Attention-based Translational Knowledge Graph Embedding via Nonlinear Dynamic Mapping -- Multi-Grained Dependency Graph Neural Network for Chinese Open Information Extraction -- Human-Understandable Decision Making for Visual Recognition -- LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding -- Transferring Domain Knowledge with an Adviser in Continuous Tasks -- Inferring Hierarchical Mixture Structures: A Bayesian Nonparametric Approach -- Quality Control for Hierarchical Classification with Incomplete Annotations -- Learning from Data -- Learning Discriminative Features using Multi-label Dual Space -- AutoCluster: Meta-learning Based Ensemble Method for Automated Unsupervised Clustering -- BanditRank: Learning to Rank Using Contextual Bandits -- A compressed and accelerated SegNet for plant leaf disease segmentation: A Differential Evolution based approach -- Meta-Context Transformers for Domain-Specific Response Generation -- A Multi-task Kernel Learning Algorithm for Survival Analysis -- Meta-data Augmentation based Search Strategy through Generative Adversarial Network for AutoML Model Selection -- Tree-Capsule: Tree-Structured Capsule Network for Improving Relation Extraction -- Rule Injection-based Generative Adversarial Imitation Learning for Knowledge Graph Reasoning -- Hierarchical Self Attention Based Autoencoder for Open-Set Human Activity Recognition -- Reinforced Natural Language Inference for Distantly Supervised Relation Classification -- SaGCN: Structure-aware Graph Convolution Network for Document-level Relation Extraction -- Addressing the class imbalance problem in medical image segmentation via accelerated Tversky loss function -- Incorporating Relational Knowledge in Explainable Fake News Detection -- Incorporating Syntactic Information into Relation Representations for Enhanced Relation Extraction. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part III [documento electrónico] / Karlapalem, Kamal, ; Cheng, Hong, ; Ramakrishnan, Naren, ; Agrawal, R. K., ; Reddy, P. Krishna, ; Srivastava, Jaideep, ; Chakraborty, Tanmoy, . - 1 ed. . - [s.l.] : Springer, 2021 . - XXIII, 434 p. 142 ilustraciones, 117 ilustraciones en color.
ISBN : 978-3-030-75768-7
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Inteligencia artificial Ciencias sociales Algoritmos Informática Visión por computador Aplicación informática en ciencias sociales y del comportamiento Diseño y Análisis de Algoritmos Computadoras y Educación Matemáticas de la Computación Clasificación: Resumen: El conjunto de tres volúmenes LNAI 12712-12714 constituye las actas de la 25.ª Conferencia de Asia PacÃfico sobre avances en el descubrimiento de conocimientos y la minerÃa de datos, PAKDD 2021, que se celebró del 11 al 14 de mayo de 2021. Los 157 artÃculos incluidos en las actas fueron cuidadosamente revisado y seleccionado de un total de 628 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: Parte I: Aplicaciones del descubrimiento de conocimientos y extracción de datos especializados; Parte II: MinerÃa de datos clásica; teorÃa y principios de minerÃa de datos; sistemas de recomendación; y análisis de texto; Parte III: Aprendizaje e incorporación de representaciones, y aprendizaje a partir de datos. Nota de contenido: Representation Learning and Embedding -- Episode Adaptive Embedding Networks for Few-shot Learning -- Universal Representation for Code -- Self-supervised Adaptive Aggregator Learning on Graph -- A Fast Algorithm for Simultaneous Sparse Approximation -- STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation Learning -- RW-GCN: Training Graph Convolution Networks with biased random walk for Semi-Supervised Classification -- Loss-aware Pattern Inference: A Correction on the Wrongly Claimed Limitations of Embedding Models -- SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network -- VIKING: Adversarial Attack on Network Embeddings via Supervised Network Poisoning -- Self-supervised Graph Representation Learning with Variational Inference -- Manifold Approximation and Projection by Maximizing Graph Information -- Learning Attention-based Translational Knowledge Graph Embedding via Nonlinear Dynamic Mapping -- Multi-Grained Dependency Graph Neural Network for Chinese Open Information Extraction -- Human-Understandable Decision Making for Visual Recognition -- LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding -- Transferring Domain Knowledge with an Adviser in Continuous Tasks -- Inferring Hierarchical Mixture Structures: A Bayesian Nonparametric Approach -- Quality Control for Hierarchical Classification with Incomplete Annotations -- Learning from Data -- Learning Discriminative Features using Multi-label Dual Space -- AutoCluster: Meta-learning Based Ensemble Method for Automated Unsupervised Clustering -- BanditRank: Learning to Rank Using Contextual Bandits -- A compressed and accelerated SegNet for plant leaf disease segmentation: A Differential Evolution based approach -- Meta-Context Transformers for Domain-Specific Response Generation -- A Multi-task Kernel Learning Algorithm for Survival Analysis -- Meta-data Augmentation based Search Strategy through Generative Adversarial Network for AutoML Model Selection -- Tree-Capsule: Tree-Structured Capsule Network for Improving Relation Extraction -- Rule Injection-based Generative Adversarial Imitation Learning for Knowledge Graph Reasoning -- Hierarchical Self Attention Based Autoencoder for Open-Set Human Activity Recognition -- Reinforced Natural Language Inference for Distantly Supervised Relation Classification -- SaGCN: Structure-aware Graph Convolution Network for Document-level Relation Extraction -- Addressing the class imbalance problem in medical image segmentation via accelerated Tversky loss function -- Incorporating Relational Knowledge in Explainable Fake News Detection -- Incorporating Syntactic Information into Relation Representations for Enhanced Relation Extraction. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 6th International Conference, BDA 2018, Warangal, India, December 18–21, 2018, Proceedings / Mondal, Anirban ; Gupta, Himanshu ; Srivastava, Jaideep ; Reddy, P. Krishna ; Somayajulu, D.V.L.N
![]()
TÃtulo : 6th International Conference, BDA 2018, Warangal, India, December 18–21, 2018, Proceedings Tipo de documento: documento electrónico Autores: Mondal, Anirban, ; Gupta, Himanshu, ; Srivastava, Jaideep, ; Reddy, P. Krishna, ; Somayajulu, D.V.L.N, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2018 Número de páginas: XV, 424 p. 185 ilustraciones, 139 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-04780-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Procesamiento de datos Inteligencia artificial Gestión de base de datos Software de la aplicacion Computadoras digitales electrónicas TeorÃa de las máquinas MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Rendimiento y evaluación del sistema Lenguajes formales y teorÃa de los autómatas Clasificación: Resumen: Este libro constituye las actas arbitradas de la 6.ª Conferencia Internacional sobre análisis de Big Data, BDA 2018, celebrada en Warangal, India, en diciembre de 2018. Los 29 artÃculos presentados en este volumen fueron cuidadosamente revisados ​​y seleccionados entre 93 presentaciones. Los artÃculos están organizados en secciones temáticas denominadas: análisis de big data: visión y perspectivas; análisis de datos financieros y flujos de datos; datos web y de redes sociales; sistemas y marcos de big data; análisis predictivo en los ámbitos sanitario y agrÃcola; y aprendizaje automático y minerÃa de patrones. . Nota de contenido: Big Data Analytics: Vision and Perspectives -- Financial Data Analytics and Data Streams -- Web and Social Media Data -- Big Data Systems and Frameworks -- Predictive Analytics in Healthcare and Agricultural Domains -- Machine Learning and Pattern Mining. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 6th International Conference, BDA 2018, Warangal, India, December 18–21, 2018, Proceedings [documento electrónico] / Mondal, Anirban, ; Gupta, Himanshu, ; Srivastava, Jaideep, ; Reddy, P. Krishna, ; Somayajulu, D.V.L.N, . - 1 ed. . - [s.l.] : Springer, 2018 . - XV, 424 p. 185 ilustraciones, 139 ilustraciones en color.
ISBN : 978-3-030-04780-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Procesamiento de datos Inteligencia artificial Gestión de base de datos Software de la aplicacion Computadoras digitales electrónicas TeorÃa de las máquinas MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Rendimiento y evaluación del sistema Lenguajes formales y teorÃa de los autómatas Clasificación: Resumen: Este libro constituye las actas arbitradas de la 6.ª Conferencia Internacional sobre análisis de Big Data, BDA 2018, celebrada en Warangal, India, en diciembre de 2018. Los 29 artÃculos presentados en este volumen fueron cuidadosamente revisados ​​y seleccionados entre 93 presentaciones. Los artÃculos están organizados en secciones temáticas denominadas: análisis de big data: visión y perspectivas; análisis de datos financieros y flujos de datos; datos web y de redes sociales; sistemas y marcos de big data; análisis predictivo en los ámbitos sanitario y agrÃcola; y aprendizaje automático y minerÃa de patrones. . Nota de contenido: Big Data Analytics: Vision and Perspectives -- Financial Data Analytics and Data Streams -- Web and Social Media Data -- Big Data Systems and Frameworks -- Predictive Analytics in Healthcare and Agricultural Domains -- Machine Learning and Pattern Mining. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 7th International Conference, BDA 2019, Ahmedabad, India, December 17–20, 2019, Proceedings / Madria, Sanjay ; Fournier-Viger, Philippe ; Chaudhary, Sanjay ; Reddy, P. Krishna
![]()
TÃtulo : 7th International Conference, BDA 2019, Ahmedabad, India, December 17–20, 2019, Proceedings Tipo de documento: documento electrónico Autores: Madria, Sanjay, ; Fournier-Viger, Philippe, ; Chaudhary, Sanjay, ; Reddy, P. Krishna, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XIII, 462 p. 290 ilustraciones, 142 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-37188-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Procesamiento de datos Inteligencia artificial Software de la aplicacion Gestión de base de datos MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Clasificación: Resumen: Este libro constituye las actas arbitradas de la Séptima Conferencia Internacional sobre análisis de Big Data, BDA 2019, celebrada en Ahmedabad, India, en diciembre de 2019. Los 25 artÃculos presentados en este volumen fueron cuidadosamente revisados ​​y seleccionados entre 53 presentaciones. Los artÃculos están organizados en secciones temáticas denominadas: análisis de big data: visión y perspectivas; búsqueda y extracción de información; análisis predictivo en los ámbitos médico y agrÃcola; análisis de gráficos; minerÃa de patrones; y aprendizaje automático. Nota de contenido: Big Data Analytics: Vision and Perspectives -- Transforming Sensing Data into Smart Data for Smart Sustainable Cities -- Deep Learning Models for Medical Image Analysis: Challenges and Future Directions -- Recent Advances and Challenges in design of Non-Goal Oriented Dialogue System -- Data Cube is Dead, Long Life to Data Cube in the Age of Web Data -- Search and Information Extraction -- Improving Result Diversity using Query Term Proximity in Exploratory Search -- Segment-search vs Knowledge Graphs: Making a Keyword Search Engine for Web Documents -- Pairing Users in Social Media via Processing Meta-data from Conversational Files -- Large-Scale Information Extraction from Emails with Data Constraints -- Comparative Analysis of Rule-based, Dictionary-based and Hybrid Stemmers for Gujarati Language -- Predictive Analytics in Medical and Agricultural Domains -- Artificial Intelligence and Bayesian Knowledge Network in Health Care – Smartphone Apps for diagnosis and differentiation of anemias with higher accuracy at Resource Constrained Point-of-Care settings -- Analyzing Domain Knowledge for Big Data Analysis: A Case Study with Urban Tree Type Classification -- Market Intelligence for Agricultural Commodities using Forecasting and Deep Learning Techniques -- Graph Analytics -- TKG: Efficient Mining of Top-K Frequent Subgraphs -- Why Multilayer Networks Instead Of Simple Graphs? Modeling Effectiveness And Analysis Flexibility & Efficiency! -- Gossip Based Distributed Real Time Task Scheduling with Guaranteed Performance on Heterogeneous Networks -- Data-Driven Optimization of Public Transit Schedule -- Pattern Mining -- Discovering Spatial High Utility Frequent Itemsets in Spatiotemporal Databases -- Efficient Algorithms For Flock Detection in Large Spatio-Temporal Data -- Local Temporal Compression for (Globally) Evolving Spatial Surfaces -- An Explicit Relationship between Sequential Patterns and their Concise Representations -- Machine Learning -- A novel approach to identify the determinants of online review helpfulness and predict the helpfulness score across product categories -- Analysis and Recognition of Hand-drawn Images with Effective Data Handling -- Real Time Static Gesture Detection Using Deep Learning -- Interpreting Context of Images using Scene Graphs -- Deep Learning in the Domain of Near-Duplicate Document Detection. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 7th International Conference, BDA 2019, Ahmedabad, India, December 17–20, 2019, Proceedings [documento electrónico] / Madria, Sanjay, ; Fournier-Viger, Philippe, ; Chaudhary, Sanjay, ; Reddy, P. Krishna, . - 1 ed. . - [s.l.] : Springer, 2019 . - XIII, 462 p. 290 ilustraciones, 142 ilustraciones en color.
ISBN : 978-3-030-37188-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Procesamiento de datos Inteligencia artificial Software de la aplicacion Gestión de base de datos MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Clasificación: Resumen: Este libro constituye las actas arbitradas de la Séptima Conferencia Internacional sobre análisis de Big Data, BDA 2019, celebrada en Ahmedabad, India, en diciembre de 2019. Los 25 artÃculos presentados en este volumen fueron cuidadosamente revisados ​​y seleccionados entre 53 presentaciones. Los artÃculos están organizados en secciones temáticas denominadas: análisis de big data: visión y perspectivas; búsqueda y extracción de información; análisis predictivo en los ámbitos médico y agrÃcola; análisis de gráficos; minerÃa de patrones; y aprendizaje automático. Nota de contenido: Big Data Analytics: Vision and Perspectives -- Transforming Sensing Data into Smart Data for Smart Sustainable Cities -- Deep Learning Models for Medical Image Analysis: Challenges and Future Directions -- Recent Advances and Challenges in design of Non-Goal Oriented Dialogue System -- Data Cube is Dead, Long Life to Data Cube in the Age of Web Data -- Search and Information Extraction -- Improving Result Diversity using Query Term Proximity in Exploratory Search -- Segment-search vs Knowledge Graphs: Making a Keyword Search Engine for Web Documents -- Pairing Users in Social Media via Processing Meta-data from Conversational Files -- Large-Scale Information Extraction from Emails with Data Constraints -- Comparative Analysis of Rule-based, Dictionary-based and Hybrid Stemmers for Gujarati Language -- Predictive Analytics in Medical and Agricultural Domains -- Artificial Intelligence and Bayesian Knowledge Network in Health Care – Smartphone Apps for diagnosis and differentiation of anemias with higher accuracy at Resource Constrained Point-of-Care settings -- Analyzing Domain Knowledge for Big Data Analysis: A Case Study with Urban Tree Type Classification -- Market Intelligence for Agricultural Commodities using Forecasting and Deep Learning Techniques -- Graph Analytics -- TKG: Efficient Mining of Top-K Frequent Subgraphs -- Why Multilayer Networks Instead Of Simple Graphs? Modeling Effectiveness And Analysis Flexibility & Efficiency! -- Gossip Based Distributed Real Time Task Scheduling with Guaranteed Performance on Heterogeneous Networks -- Data-Driven Optimization of Public Transit Schedule -- Pattern Mining -- Discovering Spatial High Utility Frequent Itemsets in Spatiotemporal Databases -- Efficient Algorithms For Flock Detection in Large Spatio-Temporal Data -- Local Temporal Compression for (Globally) Evolving Spatial Surfaces -- An Explicit Relationship between Sequential Patterns and their Concise Representations -- Machine Learning -- A novel approach to identify the determinants of online review helpfulness and predict the helpfulness score across product categories -- Analysis and Recognition of Hand-drawn Images with Effective Data Handling -- Real Time Static Gesture Detection Using Deep Learning -- Interpreting Context of Images using Scene Graphs -- Deep Learning in the Domain of Near-Duplicate Document Detection. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 8th International Conference, BDA 2020, Sonepat, India, December 15–18, 2020, Proceedings / Bellatreche, Ladjel ; Goyal, Vikram ; Fujita, Hamido ; Mondal, Anirban ; Reddy, P. Krishna
![]()
PermalinkPermalinkBig Data Analytics / Srirama, Satish Narayana ; Lin, Jerry Chun-Wei ; Bhatnagar, Raj ; Agarwal, Sonali ; Reddy, P. Krishna
![]()
Permalink