Información del autor
Autor Gama, João |
Documentos disponibles escritos por este autor (10)
Crear una solicitud de compra Refinar búsqueda
Advances in Intelligent Data Analysis XIX / Abreu, Pedro Henriques ; Rodrigues, Pedro Pereira ; Fernández, Alberto ; Gama, João
TÃtulo : Advances in Intelligent Data Analysis XIX : 19th International Symposium on Intelligent Data Analysis, IDA 2021, Porto, Portugal, April 26–28, 2021, Proceedings / Tipo de documento: documento electrónico Autores: Abreu, Pedro Henriques, ; Rodrigues, Pedro Pereira, ; Fernández, Alberto, ; Gama, João, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVI, 454 p. 138 ilustraciones, 107 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-74251-5 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Gestión de base de datos Ciencias sociales Algoritmos Procesamiento del lenguaje natural (Informática) Aplicación informática en ciencias sociales y del comportamiento. Diseño y Análisis de Algoritmos Computadoras y Educación Procesamiento del lenguaje natural (PNL) Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este libro constituye las actas del 19º Simposio Internacional sobre Análisis Inteligente de Datos, IDA 2021, que estaba previsto que tuviera lugar en Oporto, Portugal. Debido a la pandemia de COVID-19, la conferencia se llevó a cabo en lÃnea del 26 al 28 de abril de 2021. Los 35 artÃculos incluidos en este libro fueron cuidadosamente revisados ​​y seleccionados entre 113 presentaciones. Los artÃculos se organizaron en secciones temáticas denominadas: modelado con redes neuronales; modelado con aprendizaje estadÃstico; lenguaje de modelado y gráficos; y modelado de formatos de datos especiales. Nota de contenido: Modeling with Neural Networks -- Hyperspherical Weight Uncertainty in Neural Networks -- Partially Monotonic Learning for Neural Networks -- Multiple-Manifold Generation with an Ensemble GAN and Learned Noise Prior -- Simple, Efficient and Convenient Decentralized Multi-Task Learning for Neural Networks -- Deep Hybrid Neural Networks with Improved Weighted Word Embeddings for Sentiment Analysis -- Explaining Neural Networks by Decoding Layer Activations -- Analogical Embedding for Analogy-based Learning to Rank -- HORUS-NER: A Multimodal Named Entity Recognition Framework for Noisy Data -- Modeling with Statistical Learning -- Incremental Search Space Construction for Machine Learning Pipeline Synthesis -- Adversarial Vulnerability of Active Transfer Learning -- Revisiting Non-Specific Syndromic Surveillance -- Gradient Ascent for Best Response Regression -- Intelligent Structural Damage Detection: a Federated Learning Approach -- Composite surrogate for likelihood-freeBayesian optimisation in high-dimensional settings of activity-based transportation models -- Active Selection of Classification Features -- Feature Selection for Hierarchical Multi-Label Classification -- Bandit Algorithm for Both Unknown Best Position and Best Item Display on Web Pages -- Performance prediction for hardware-software configurations: A case study for video games -- avatar / Automated Feature Wrangling for Machine Learning -- Modeling Language and Graphs -- Semantically Enriching Embeddings of Highly In ectable Verbs for Improving Intent Detection in a Romanian Home Assistant Scenario -- BoneBert: A BERT-based Automated Information Extraction System of Radiology Reports for Bone Fracture Detection and Diagnosis -- Linking the Dynamics of User Stance to the Structure of Online Discussions -- Unsupervised Methods for the Study of Transformer Embeddings -- A Framework for Authorial Clustering of Shorter Texts in Latent Semantic Spaces -- DeepGG: a Deep Graph Generator -- SINr: fast computing of Sparse Interpretable Node Representations is not a sin -- Detection of contextual anomalies in attributed graphs -- Ising-Based Louvain Method: Clustering Large Graphs with Specialized Hardware -- Modeling Special Data Formats -- Reducing Negative Impact of Noise in Boolean Matrix Factorization with Association Rules -- Z-Hist: A Temporal Abstraction of Multivariate Histogram Snapshots -- muppets: Multipurpose Table Segmentation -- SpLyCI: Integrating Spreadsheets by Recognising and Solving Layout Constraints -- RTL: A Robust Time Series Labeling Algorithm -- The Compromise of Data Privacy in Predictive Performance -- Efficient Privacy Preserving Distributed K-Means for Non-IID Data. Tipo de medio : Computadora Summary : This book constitutes the proceedings of the 19th International Symposium on Intelligent Data Analysis, IDA 2021, which was planned to take place in Porto, Portugal. Due to the COVID-19 pandemic the conference was held online during April 26-28, 2021. The 35 papers included in this book were carefully reviewed and selected from 113 submissions. The papers were organized in topical sections named: modeling with neural networks; modeling with statistical learning; modeling language and graphs; and modeling special data formats. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Advances in Intelligent Data Analysis XIX : 19th International Symposium on Intelligent Data Analysis, IDA 2021, Porto, Portugal, April 26–28, 2021, Proceedings / [documento electrónico] / Abreu, Pedro Henriques, ; Rodrigues, Pedro Pereira, ; Fernández, Alberto, ; Gama, João, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVI, 454 p. 138 ilustraciones, 107 ilustraciones en color.
ISBN : 978-3-030-74251-5
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Gestión de base de datos Ciencias sociales Algoritmos Procesamiento del lenguaje natural (Informática) Aplicación informática en ciencias sociales y del comportamiento. Diseño y Análisis de Algoritmos Computadoras y Educación Procesamiento del lenguaje natural (PNL) Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este libro constituye las actas del 19º Simposio Internacional sobre Análisis Inteligente de Datos, IDA 2021, que estaba previsto que tuviera lugar en Oporto, Portugal. Debido a la pandemia de COVID-19, la conferencia se llevó a cabo en lÃnea del 26 al 28 de abril de 2021. Los 35 artÃculos incluidos en este libro fueron cuidadosamente revisados ​​y seleccionados entre 113 presentaciones. Los artÃculos se organizaron en secciones temáticas denominadas: modelado con redes neuronales; modelado con aprendizaje estadÃstico; lenguaje de modelado y gráficos; y modelado de formatos de datos especiales. Nota de contenido: Modeling with Neural Networks -- Hyperspherical Weight Uncertainty in Neural Networks -- Partially Monotonic Learning for Neural Networks -- Multiple-Manifold Generation with an Ensemble GAN and Learned Noise Prior -- Simple, Efficient and Convenient Decentralized Multi-Task Learning for Neural Networks -- Deep Hybrid Neural Networks with Improved Weighted Word Embeddings for Sentiment Analysis -- Explaining Neural Networks by Decoding Layer Activations -- Analogical Embedding for Analogy-based Learning to Rank -- HORUS-NER: A Multimodal Named Entity Recognition Framework for Noisy Data -- Modeling with Statistical Learning -- Incremental Search Space Construction for Machine Learning Pipeline Synthesis -- Adversarial Vulnerability of Active Transfer Learning -- Revisiting Non-Specific Syndromic Surveillance -- Gradient Ascent for Best Response Regression -- Intelligent Structural Damage Detection: a Federated Learning Approach -- Composite surrogate for likelihood-freeBayesian optimisation in high-dimensional settings of activity-based transportation models -- Active Selection of Classification Features -- Feature Selection for Hierarchical Multi-Label Classification -- Bandit Algorithm for Both Unknown Best Position and Best Item Display on Web Pages -- Performance prediction for hardware-software configurations: A case study for video games -- avatar / Automated Feature Wrangling for Machine Learning -- Modeling Language and Graphs -- Semantically Enriching Embeddings of Highly In ectable Verbs for Improving Intent Detection in a Romanian Home Assistant Scenario -- BoneBert: A BERT-based Automated Information Extraction System of Radiology Reports for Bone Fracture Detection and Diagnosis -- Linking the Dynamics of User Stance to the Structure of Online Discussions -- Unsupervised Methods for the Study of Transformer Embeddings -- A Framework for Authorial Clustering of Shorter Texts in Latent Semantic Spaces -- DeepGG: a Deep Graph Generator -- SINr: fast computing of Sparse Interpretable Node Representations is not a sin -- Detection of contextual anomalies in attributed graphs -- Ising-Based Louvain Method: Clustering Large Graphs with Specialized Hardware -- Modeling Special Data Formats -- Reducing Negative Impact of Noise in Boolean Matrix Factorization with Association Rules -- Z-Hist: A Temporal Abstraction of Multivariate Histogram Snapshots -- muppets: Multipurpose Table Segmentation -- SpLyCI: Integrating Spreadsheets by Recognising and Solving Layout Constraints -- RTL: A Robust Time Series Labeling Algorithm -- The Compromise of Data Privacy in Predictive Performance -- Efficient Privacy Preserving Distributed K-Means for Non-IID Data. Tipo de medio : Computadora Summary : This book constitutes the proceedings of the 19th International Symposium on Intelligent Data Analysis, IDA 2021, which was planned to take place in Porto, Portugal. Due to the COVID-19 pandemic the conference was held online during April 26-28, 2021. The 35 papers included in this book were carefully reviewed and selected from 113 submissions. The papers were organized in topical sections named: modeling with neural networks; modeling with statistical learning; modeling language and graphs; and modeling special data formats. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Database Systems for Advanced Applications / Li, Guoliang ; Yang, Jun ; Gama, João ; Natwichai, Juggapong ; Tong, Yongxin
TÃtulo : Database Systems for Advanced Applications : 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22–25, 2019, Proceedings, Part I / Tipo de documento: documento electrónico Autores: Li, Guoliang, ; Yang, Jun, ; Gama, João, ; Natwichai, Juggapong, ; Tong, Yongxin, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XXIV, 817 p. ISBN/ISSN/DL: 978-3-030-18576-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Gestión de base de datos Procesamiento de datos Sistemas de almacenamiento y recuperación de información. Inteligencia artificial Ciencias sociales Red de computadoras MinerÃa de datos y descubrimiento de conocimientos Almacenamiento y recuperación de información Aplicación informática en ciencias sociales y del comportamiento. Redes de comunicación informática Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este conjunto de dos volúmenes LNCS 11446 y LNCS 11447 constituye las actas arbitradas de la 24.ª Conferencia internacional sobre sistemas de bases de datos para aplicaciones avanzadas, DASFAA 2019, celebrada en Chiang Mai, Tailandia, en abril de 2019. Los 92 artÃculos completos y los 64 artÃculos breves se seleccionaron cuidadosamente de un total de 501 presentaciones. Además, se incluyen 13 artÃculos de demostración y 6 artÃculos tutoriales. Los artÃculos completos están organizados en los siguientes temas: big data; agrupamiento y clasificación; crowdsourcing; integración de datos; incrustación; gráficos; gráfico de conocimiento; aprendizaje automático; privacidad y gráfico; recomendación; red social; espacial; y espacio-temporal. Los artÃculos breves, los artÃculos de demostración y los artÃculos tutoriales se pueden encontrar en el volumen LNCS 11448, que también incluye los talleres de DASFAA 2019. Nota de contenido: Big Data -- Accelerating Real-time Tracking Applications over Big Data Stream with Constrained Space -- A Frequency Scaling based Performance Indicator Framework for Big Data Systems -- A Time-Series Sockpuppet Detection Method for Dynamic Social Relationships -- Accelerating Hybrid Transactional/Analytical Processing using Consistent Dual-Snapshot -- HSDS: an Abstractive Model for Automatic Survey Generation -- PU-Shapelets: Towards Pattern-based Positive Unlabeled Classification of Time Series -- Clustering and Classification -- Discovering Relationship Patterns among Associated Temporal Event Sequences -- Efficient Mining of Event Periodicity in Data Series -- EPPADS: An Enhanced Phase-based Performance-Aware Dynamic Scheduler for High Job Execution Performance in Large Scale Data Clusters -- Incremental Discovery of Order Dependencies on Tuple Insertions -- Multi-view Spectral Clustering via Weighted-view Consensus Similarity and Matrix-decomposition based Discretization.-SIRCS: Slope-intercept-residual Compression by Correlation Sequencing for Multi-stream High Variation Data -- Crowdsourcing -- Fast Quorum-based Log Replication and Replay for Fast Databases -- PDCS: A Privacy-preserving Distinct Counting Scheme for Mobile Sensing -- Reinforced Reliable Worker Selection for Spatial Crowdsensing Networks -- SeqST-ResNet: A Sequential Spatial Temporal ResNet for Task Prediction in Spatial Crowdsourcing -- Towards Robust Arbitrarily Oriented Subspace Clustering -- Truthful Crowdsensed Data Trading Based on Reverse Auction and Blockchain -- Data Integration -- Selective Matrix Factorization for Multi-Relational Data Fusion -- Selectivity Estimation on Set Containment Search -- Typicality-based Across-time Mapping of Entity Sets in Document Archives -- Unsupervised Entity Alignment using Attribute Triples and Relation Triples -- Combining Meta-Graph and Attention for Recommendation over Heterogeneous Information Network -- Efficient Search of the Most Cohesive Co-Located Community in Attributed Networks -- Embedding -- A Weighted Word Embedding Model for Text Classification -- Bipartite Network Embedding via Effective Integration of Explicit and Implicit Relations -- Enhancing Network Embedding with Implicit Clustering -- MDAL: Multi-task Dual Attention LSTM Model for Semi-supervised Network Embedding -- Net2Text: An Edge Labelling Language Model for Personalized Comment Generation -- Understanding Information Diffusion via Heterogeneous Information Network Embeddings -- Graphs -- Distributed Parallel Structural Hole Detection on Big Graphs -- DynGraphGAN: Dynamic Graph Embedding via Generative Adversarial Networks -- Evaluating Mixed Patterns on Large Data Graphs Using Bitmap Views -- Heterogeneous Information Network Hashing for Fast Nearest Neighbor Search -- Learning Fine-grained Patient Similarity with Dynamic Bayesian Network Embedded RNNs -- Towards Efficient k-TriPeak Decomposition on Large Graphs -- Knowledge Graph -- Evaluating the Choice of Tags in CQA Sites -- Fast Maximal Clique Enumeration for Real-world Graphs -- Leveraging Knowledge Graph Embeddings for Natural Language Question Answering -- Measuring Semantic Relatedness with Knowledge Association Network -- SINE: Side Information Network Embedding -- A Knowledge Graph Enhanced Topic Modeling Approach for Herb Recommendation -- Knowledge Base Error Detection with Relation Sensitive Embedding -- Leon: A Distributed RDF Engine for Multi-query Processing -- MathGraph: A knowledge graph for solving mathematical exercises -- Multi-Hop Path Queries over Knowledge Graphs with Neural Memory Networks -- Sentiment Classification by Leveraging the Shared Knowledge. Tipo de medio : Computadora Summary : This two-volume set LNCS 11446 and LNCS 11447 constitutes the refereed proceedings of the 24th International Conference on Database Systems for Advanced Applications, DASFAA 2019, held in Chiang Mai, Thailand, in April 2019. The 92 full papers and 64 short papers were carefully selected from a total of 501 submissions. In addition, 13 demo papers and 6 tutorial papers are included. The full papers are organized in the following topics: big data; clustering and classification; crowdsourcing; data integration; embedding; graphs; knowledge graph; machine learning; privacy and graph; recommendation; social network; spatial; and spatio-temporal. The short papers, demo papers, and tutorial papers can be found in the volume LNCS 11448, which also includes the workshops of DASFAA 2019. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Database Systems for Advanced Applications : 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22–25, 2019, Proceedings, Part I / [documento electrónico] / Li, Guoliang, ; Yang, Jun, ; Gama, João, ; Natwichai, Juggapong, ; Tong, Yongxin, . - 1 ed. . - [s.l.] : Springer, 2019 . - XXIV, 817 p.
ISBN : 978-3-030-18576-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Gestión de base de datos Procesamiento de datos Sistemas de almacenamiento y recuperación de información. Inteligencia artificial Ciencias sociales Red de computadoras MinerÃa de datos y descubrimiento de conocimientos Almacenamiento y recuperación de información Aplicación informática en ciencias sociales y del comportamiento. Redes de comunicación informática Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este conjunto de dos volúmenes LNCS 11446 y LNCS 11447 constituye las actas arbitradas de la 24.ª Conferencia internacional sobre sistemas de bases de datos para aplicaciones avanzadas, DASFAA 2019, celebrada en Chiang Mai, Tailandia, en abril de 2019. Los 92 artÃculos completos y los 64 artÃculos breves se seleccionaron cuidadosamente de un total de 501 presentaciones. Además, se incluyen 13 artÃculos de demostración y 6 artÃculos tutoriales. Los artÃculos completos están organizados en los siguientes temas: big data; agrupamiento y clasificación; crowdsourcing; integración de datos; incrustación; gráficos; gráfico de conocimiento; aprendizaje automático; privacidad y gráfico; recomendación; red social; espacial; y espacio-temporal. Los artÃculos breves, los artÃculos de demostración y los artÃculos tutoriales se pueden encontrar en el volumen LNCS 11448, que también incluye los talleres de DASFAA 2019. Nota de contenido: Big Data -- Accelerating Real-time Tracking Applications over Big Data Stream with Constrained Space -- A Frequency Scaling based Performance Indicator Framework for Big Data Systems -- A Time-Series Sockpuppet Detection Method for Dynamic Social Relationships -- Accelerating Hybrid Transactional/Analytical Processing using Consistent Dual-Snapshot -- HSDS: an Abstractive Model for Automatic Survey Generation -- PU-Shapelets: Towards Pattern-based Positive Unlabeled Classification of Time Series -- Clustering and Classification -- Discovering Relationship Patterns among Associated Temporal Event Sequences -- Efficient Mining of Event Periodicity in Data Series -- EPPADS: An Enhanced Phase-based Performance-Aware Dynamic Scheduler for High Job Execution Performance in Large Scale Data Clusters -- Incremental Discovery of Order Dependencies on Tuple Insertions -- Multi-view Spectral Clustering via Weighted-view Consensus Similarity and Matrix-decomposition based Discretization.-SIRCS: Slope-intercept-residual Compression by Correlation Sequencing for Multi-stream High Variation Data -- Crowdsourcing -- Fast Quorum-based Log Replication and Replay for Fast Databases -- PDCS: A Privacy-preserving Distinct Counting Scheme for Mobile Sensing -- Reinforced Reliable Worker Selection for Spatial Crowdsensing Networks -- SeqST-ResNet: A Sequential Spatial Temporal ResNet for Task Prediction in Spatial Crowdsourcing -- Towards Robust Arbitrarily Oriented Subspace Clustering -- Truthful Crowdsensed Data Trading Based on Reverse Auction and Blockchain -- Data Integration -- Selective Matrix Factorization for Multi-Relational Data Fusion -- Selectivity Estimation on Set Containment Search -- Typicality-based Across-time Mapping of Entity Sets in Document Archives -- Unsupervised Entity Alignment using Attribute Triples and Relation Triples -- Combining Meta-Graph and Attention for Recommendation over Heterogeneous Information Network -- Efficient Search of the Most Cohesive Co-Located Community in Attributed Networks -- Embedding -- A Weighted Word Embedding Model for Text Classification -- Bipartite Network Embedding via Effective Integration of Explicit and Implicit Relations -- Enhancing Network Embedding with Implicit Clustering -- MDAL: Multi-task Dual Attention LSTM Model for Semi-supervised Network Embedding -- Net2Text: An Edge Labelling Language Model for Personalized Comment Generation -- Understanding Information Diffusion via Heterogeneous Information Network Embeddings -- Graphs -- Distributed Parallel Structural Hole Detection on Big Graphs -- DynGraphGAN: Dynamic Graph Embedding via Generative Adversarial Networks -- Evaluating Mixed Patterns on Large Data Graphs Using Bitmap Views -- Heterogeneous Information Network Hashing for Fast Nearest Neighbor Search -- Learning Fine-grained Patient Similarity with Dynamic Bayesian Network Embedded RNNs -- Towards Efficient k-TriPeak Decomposition on Large Graphs -- Knowledge Graph -- Evaluating the Choice of Tags in CQA Sites -- Fast Maximal Clique Enumeration for Real-world Graphs -- Leveraging Knowledge Graph Embeddings for Natural Language Question Answering -- Measuring Semantic Relatedness with Knowledge Association Network -- SINE: Side Information Network Embedding -- A Knowledge Graph Enhanced Topic Modeling Approach for Herb Recommendation -- Knowledge Base Error Detection with Relation Sensitive Embedding -- Leon: A Distributed RDF Engine for Multi-query Processing -- MathGraph: A knowledge graph for solving mathematical exercises -- Multi-Hop Path Queries over Knowledge Graphs with Neural Memory Networks -- Sentiment Classification by Leveraging the Shared Knowledge. Tipo de medio : Computadora Summary : This two-volume set LNCS 11446 and LNCS 11447 constitutes the refereed proceedings of the 24th International Conference on Database Systems for Advanced Applications, DASFAA 2019, held in Chiang Mai, Thailand, in April 2019. The 92 full papers and 64 short papers were carefully selected from a total of 501 submissions. In addition, 13 demo papers and 6 tutorial papers are included. The full papers are organized in the following topics: big data; clustering and classification; crowdsourcing; data integration; embedding; graphs; knowledge graph; machine learning; privacy and graph; recommendation; social network; spatial; and spatio-temporal. The short papers, demo papers, and tutorial papers can be found in the volume LNCS 11448, which also includes the workshops of DASFAA 2019. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Database Systems for Advanced Applications / Li, Guoliang ; Yang, Jun ; Gama, João ; Natwichai, Juggapong ; Tong, Yongxin
TÃtulo : Database Systems for Advanced Applications : 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22–25, 2019, Proceedings, Part II / Tipo de documento: documento electrónico Autores: Li, Guoliang, ; Yang, Jun, ; Gama, João, ; Natwichai, Juggapong, ; Tong, Yongxin, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XXIII, 785 p. 334 ilustraciones, 195 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-18579-4 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Gestión de base de datos Procesamiento de datos Sistemas de almacenamiento y recuperación de información. Inteligencia artificial Ciencias sociales Red de computadoras MinerÃa de datos y descubrimiento de conocimientos Almacenamiento y recuperación de información Aplicación informática en ciencias sociales y del comportamiento. Redes de comunicación informática Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este conjunto de dos volúmenes LNCS 11446 y LNCS 11447 constituye las actas arbitradas de la 24.ª Conferencia internacional sobre sistemas de bases de datos para aplicaciones avanzadas, DASFAA 2019, celebrada en Chiang Mai, Tailandia, en abril de 2019. Los 92 artÃculos completos y los 64 artÃculos breves se seleccionaron cuidadosamente de un total de 501 presentaciones. Además, se incluyen 13 artÃculos de demostración y 6 artÃculos tutoriales. Los artÃculos completos están organizados en los siguientes temas: big data; agrupamiento y clasificación; crowdsourcing; integración de datos; incrustación; gráficos; gráfico de conocimiento; aprendizaje automático; privacidad y gráfico; recomendación; red social; espacial; y espacio-temporal. Los artÃculos breves, los artÃculos de demostración y los artÃculos tutoriales se pueden encontrar en el volumen LNCS 11448, que también incluye los talleres de DASFAA 2019. Nota de contenido: Machine Learning -- An Approach Based on Bayesian Networks for Query Selectivity Estimation -- An Exploration of Cross-Modal Retrieval for Unseen Concepts -- Continuous Patient-centric Sequence Generation via Sequentially Coupled Adversarial Learning -- DMMAM: A Deep Multi-source Multi-task Attention Model for Intensive Care Unit Diagnosis -- Learning k-Occurrence Regular Expressions with Interleaving -- Learning from User Social Relation for Document Sentiment Classification -- Reinforcement Learning to Diversify Recommendations -- Retweeting Prediction using Matrix Factorization with Binomial Distribution and Contextual Information -- Sparse Gradient Compression for Distributed SGD -- STDR: A Deep Learning Method for Travel Time Estimation -- Using Fractional Latent Topic to Enhance Recurrent Neural Network in Text Similarity Modeling -- Efficiently Mining Maximal Diverse Frequent Itemsets -- Privacy and Graph -- Efficient Local Search for Minimum Dominating Sets in Large Graphs.-Multi-level Graph Compression for Fast Reachability Detection -- Multiple Privacy Regimes Mechanism For Local Differential Privacy -- Privacy Preserving Elastic Stream Processing with Clouds using Homomorphic Encryption -- Select the Best for Me: Privacy-preserving Polynomial Evaluation Algorithm over Road Network -- Recommendation -- AdaCML: Adaptive Collaborative Metric Learning for Recommendation -- Adaptive Attention-Aware Gated Recurrent Unit for Sequential Recommendation -- Attention and Convolution Enhanced Memory Network for Sequential Recommendation -- Attention-based Neural Tag Recommender System -- Density Matrix based Preference Evolution Networks for E-commerce Recommendation -- Multi-Source Multi-Net Micro-Video Recommendation with Hidden Item Category Discovery -- Incorporating Task-oriented Representation in Text Classification -- Music Playlist Recommendation with Long Short-Term Memory -- Online Collaborative Filtering with Implicit Feedback -- Subspace Ensemble-based Neighbor User Searching for Neighborhood-based Collaborative Filtering -- Towards Both Local and Global Query Result Diversification -- Social Network -- Structured Spectral Clustering of PurTree Data -- Dynamic stochastic block model with scale-free characteristic for temporal complex networks -- In Good Company: Efficient Retrieval of the Top-k Most Relevant Event-Partner Pairs -- Local Experts Finding across Multiple Social Networks -- SBRNE: An Improved Unified Framework for Social and Behavior Recommendations with Network Embedding -- User Intention-based Document Summarization on Heterogeneous Sentence Networks -- Spatial -- A Hierarchical Index Structure for Region-aware Spatial Keyword Search with Edit Distance Constraint -- Collective POI Querying Based on Multiple Keywords and User Preference -- DPSCAN: Structural Graph Clustering Based on Density Peaks -- Efficient Processing of Spatial Group Preference Queries -- Reverse-Auction-Based Competitive Order Assignment for Mobile Taxi-Hailing Systems -- Top-k Spatio-Topic Query on Social Media Data -- Spatio-temporal -- A Frequency-aware Spatio-Temporal Network for Traffic Flow Prediction -- Efficient Algorithms for Solving Aggregate Keyword Routing Problems -- Perceiving Topic Bubbles: Local Topic Detection in Spatio-temporal Tweet Stream -- Real-Time Route Planning and Online Order Dispatch for Bus-Booking Platforms -- STL: Online Detection of Taxi Trajectory Anomaly based on Spatial-Temporal Laws. Tipo de medio : Computadora Summary : This two-volume set LNCS 11446 and LNCS 11447 constitutes the refereed proceedings of the 24th International Conference on Database Systems for Advanced Applications, DASFAA 2019, held in Chiang Mai, Thailand, in April 2019. The 92 full papers and 64 short papers were carefully selected from a total of 501 submissions. In addition, 13 demo papers and 6 tutorial papers are included. The full papers are organized in the following topics: big data; clustering and classification; crowdsourcing; data integration; embedding; graphs; knowledge graph; machine learning; privacy and graph; recommendation; social network; spatial; and spatio-temporal. The short papers, demo papers, and tutorial papers can be found in the volume LNCS 11448, which also includes the workshops of DASFAA 2019. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Database Systems for Advanced Applications : 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22–25, 2019, Proceedings, Part II / [documento electrónico] / Li, Guoliang, ; Yang, Jun, ; Gama, João, ; Natwichai, Juggapong, ; Tong, Yongxin, . - 1 ed. . - [s.l.] : Springer, 2019 . - XXIII, 785 p. 334 ilustraciones, 195 ilustraciones en color.
ISBN : 978-3-030-18579-4
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Gestión de base de datos Procesamiento de datos Sistemas de almacenamiento y recuperación de información. Inteligencia artificial Ciencias sociales Red de computadoras MinerÃa de datos y descubrimiento de conocimientos Almacenamiento y recuperación de información Aplicación informática en ciencias sociales y del comportamiento. Redes de comunicación informática Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este conjunto de dos volúmenes LNCS 11446 y LNCS 11447 constituye las actas arbitradas de la 24.ª Conferencia internacional sobre sistemas de bases de datos para aplicaciones avanzadas, DASFAA 2019, celebrada en Chiang Mai, Tailandia, en abril de 2019. Los 92 artÃculos completos y los 64 artÃculos breves se seleccionaron cuidadosamente de un total de 501 presentaciones. Además, se incluyen 13 artÃculos de demostración y 6 artÃculos tutoriales. Los artÃculos completos están organizados en los siguientes temas: big data; agrupamiento y clasificación; crowdsourcing; integración de datos; incrustación; gráficos; gráfico de conocimiento; aprendizaje automático; privacidad y gráfico; recomendación; red social; espacial; y espacio-temporal. Los artÃculos breves, los artÃculos de demostración y los artÃculos tutoriales se pueden encontrar en el volumen LNCS 11448, que también incluye los talleres de DASFAA 2019. Nota de contenido: Machine Learning -- An Approach Based on Bayesian Networks for Query Selectivity Estimation -- An Exploration of Cross-Modal Retrieval for Unseen Concepts -- Continuous Patient-centric Sequence Generation via Sequentially Coupled Adversarial Learning -- DMMAM: A Deep Multi-source Multi-task Attention Model for Intensive Care Unit Diagnosis -- Learning k-Occurrence Regular Expressions with Interleaving -- Learning from User Social Relation for Document Sentiment Classification -- Reinforcement Learning to Diversify Recommendations -- Retweeting Prediction using Matrix Factorization with Binomial Distribution and Contextual Information -- Sparse Gradient Compression for Distributed SGD -- STDR: A Deep Learning Method for Travel Time Estimation -- Using Fractional Latent Topic to Enhance Recurrent Neural Network in Text Similarity Modeling -- Efficiently Mining Maximal Diverse Frequent Itemsets -- Privacy and Graph -- Efficient Local Search for Minimum Dominating Sets in Large Graphs.-Multi-level Graph Compression for Fast Reachability Detection -- Multiple Privacy Regimes Mechanism For Local Differential Privacy -- Privacy Preserving Elastic Stream Processing with Clouds using Homomorphic Encryption -- Select the Best for Me: Privacy-preserving Polynomial Evaluation Algorithm over Road Network -- Recommendation -- AdaCML: Adaptive Collaborative Metric Learning for Recommendation -- Adaptive Attention-Aware Gated Recurrent Unit for Sequential Recommendation -- Attention and Convolution Enhanced Memory Network for Sequential Recommendation -- Attention-based Neural Tag Recommender System -- Density Matrix based Preference Evolution Networks for E-commerce Recommendation -- Multi-Source Multi-Net Micro-Video Recommendation with Hidden Item Category Discovery -- Incorporating Task-oriented Representation in Text Classification -- Music Playlist Recommendation with Long Short-Term Memory -- Online Collaborative Filtering with Implicit Feedback -- Subspace Ensemble-based Neighbor User Searching for Neighborhood-based Collaborative Filtering -- Towards Both Local and Global Query Result Diversification -- Social Network -- Structured Spectral Clustering of PurTree Data -- Dynamic stochastic block model with scale-free characteristic for temporal complex networks -- In Good Company: Efficient Retrieval of the Top-k Most Relevant Event-Partner Pairs -- Local Experts Finding across Multiple Social Networks -- SBRNE: An Improved Unified Framework for Social and Behavior Recommendations with Network Embedding -- User Intention-based Document Summarization on Heterogeneous Sentence Networks -- Spatial -- A Hierarchical Index Structure for Region-aware Spatial Keyword Search with Edit Distance Constraint -- Collective POI Querying Based on Multiple Keywords and User Preference -- DPSCAN: Structural Graph Clustering Based on Density Peaks -- Efficient Processing of Spatial Group Preference Queries -- Reverse-Auction-Based Competitive Order Assignment for Mobile Taxi-Hailing Systems -- Top-k Spatio-Topic Query on Social Media Data -- Spatio-temporal -- A Frequency-aware Spatio-Temporal Network for Traffic Flow Prediction -- Efficient Algorithms for Solving Aggregate Keyword Routing Problems -- Perceiving Topic Bubbles: Local Topic Detection in Spatio-temporal Tweet Stream -- Real-Time Route Planning and Online Order Dispatch for Bus-Booking Platforms -- STL: Online Detection of Taxi Trajectory Anomaly based on Spatial-Temporal Laws. Tipo de medio : Computadora Summary : This two-volume set LNCS 11446 and LNCS 11447 constitutes the refereed proceedings of the 24th International Conference on Database Systems for Advanced Applications, DASFAA 2019, held in Chiang Mai, Thailand, in April 2019. The 92 full papers and 64 short papers were carefully selected from a total of 501 submissions. In addition, 13 demo papers and 6 tutorial papers are included. The full papers are organized in the following topics: big data; clustering and classification; crowdsourcing; data integration; embedding; graphs; knowledge graph; machine learning; privacy and graph; recommendation; social network; spatial; and spatio-temporal. The short papers, demo papers, and tutorial papers can be found in the volume LNCS 11448, which also includes the workshops of DASFAA 2019. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Database Systems for Advanced Applications / Li, Guoliang ; Yang, Jun ; Gama, João ; Natwichai, Juggapong ; Tong, Yongxin
TÃtulo : Database Systems for Advanced Applications : DASFAA 2019 International Workshops: BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April 22–25, 2019, Proceedings / Tipo de documento: documento electrónico Autores: Li, Guoliang, ; Yang, Jun, ; Gama, João, ; Natwichai, Juggapong, ; Tong, Yongxin, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XXI, 607 p. 241 ilustraciones, 154 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-18590-9 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Gestión de base de datos Procesamiento de datos Software de la aplicacion Inteligencia artificial Red de computadoras Protección de datos MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Redes de comunicación informática Seguridad de datos e información Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este libro constituye las actas del taller de la 24.ª Conferencia Internacional sobre Sistemas de Bases de Datos para Aplicaciones Avanzadas, DASFAA 2019, celebrada en Chiang Mai, Tailandia, en abril de 2019. Los 14 artÃculos completos presentados fueron cuidadosamente seleccionados y revisados ​​a partir de 26 presentaciones a los tres talleres siguientes. : el VI Taller Internacional sobre Gestión y Servicio de Big Data, BDMS 2019; el 4º Taller Internacional sobre Gestión de Calidad de Big Data, BDQM 2019; y el Tercer Taller Internacional sobre Gestión y Análisis de Datos Gráficos, GDMA 2019. Este volumen también incluye los artÃculos breves, artÃculos de demostración y artÃculos tutoriales de la conferencia principal DASFAA 2019. Nota de contenido: The 6th International Workshop on Big Data Management and Service (BDSM 2019) -- A Probabilistic Approach for Inferring Latent Entity Associations in Textual Web Contents -- UHRP Uncertainty-Based Pruning Method for Anonymized Data Linear Regression -- Meta-path based MiRNA-disease Association Prediction -- Medical Question Retrieval based on Siamese Neural Network and Transfer learning method -- An adaptive Kalman filter based Ocean Wave Prediction Model using Motion Reference Unit Data -- ASLM: Adaptive Single Layer Model for Learned Index -- SparseMAAC: Sparse Attention for Multi-Agent Reinforcement Learning -- The 4th International Workshop on Big Data Quality Management (BDQM 2019) -- Identifying Reference Relationship of Desktop Files Based on Access Logs -- Visualization of Photo Album: Selecting a Representative Photo of a Specific Event -- Data Quality Management in Institutional Research Output Data Center -- Generalized Bayesian Structure Learning from Noisy Datasets.-The Third International Workshop on Graph Data Management and Analysis (GDMA 2019) -- ANDMC: An Algorithm for Author Name Disambiguation Based on Molecular Cross Clustering -- Graph Based Aspect Extraction and Rating Classification of Customer Review Data -- Streaming Massive Electric Power Data Analysis Based on Spark Streaming -- Short Papers -- Deletion Robust k-Coverage Queries -- Episodic Memory Network with Self-Attention for Emotion Detection -- Detecting Suicidal Ideation with Data Protection in Online Communities -- Hierarchical Conceptual Labeling -- Anomaly Detection in Time-Evolving Attributed Networks -- A Multi-task Learning Framework for Automatic Early Detection of Alzheimer's -- Top-k Spatial Keyword Query with Typicality and Semantics -- Align Reviews with Topics in Attention Network for Rating Prediction -- PSMSP: A Parallelized Sampling-based Approach for Mining Top-k Sequential Patterns in Database Graphs -- Value-Oriented Ranking of Online Reviews Based on Reviewer-influenced Graph -- Ancient Chinese Landscape Painting Composition Classification by Using Semantic Variational Autoencoder -- Learning Time-Aware Distributed Representations of Locations from Spatio-Temporal Trajectories -- Hyper2vec: Biased Random Walk for Hyper-Network Embedding -- Privacy-preserving and dynamic spatial range aggregation query processing in wireless sensor networks -- Adversarial Discriminative Denoising for Distant Supervision Relation Extraction -- Nonnegative Spectral Clustering for Large-Scale Semi-Supervised Learning -- Distributed PARAFAC Decomposition Method based on In-Memory Big Data System -- GPU-Accelerated Dynamic Graph Coloring -- Relevance-based Entity Embedding -- An Iterative Map-Trajectory Co-Optimisation Framework Based on Map-Matching and Map Update -- Exploring Regularity in Traditional Chinese Medicine Clinical Data Using Heterogeneous Weighted Networks Embedding -- AGREE: Attentive Tour Group Recommendation with Multi-Modal Data -- Random Decision DAG: An Entropy Based Compression Approach for Random Forest -- Generating Behavior Features for Cold-Start Spam Review Detection -- TCL: Tensor-CNN-LSTM for Travel Time Prediction with Sparse Trajectory Data -- A Semi-supervised Classification Approach for Multiple Time-varying Networks with Total Variation -- Multidimensional Skylines Over Streaming Data -- A domain adaptation approach for multistream classification -- Gradient Boosting Censored Regression for Winning Price Prediction in Real-Time Bidding -- Deep Sequential Multi-task Modeling for Next Check-in Time and Location Prediction -- SemiSync: Semi-supervised Clustering by Synchronization -- Neural Review Rating Prediction with Hierarchical Attentions and Latent Factors -- MVS-match: An Efficient Subsequence Matching Approach Based on the Series Synopsis -- Temporal-Spatial Recommendation for On-demand Cinemas -- Finding the key influences on the house price by Finite Mixture Model based on the real estate data in Changchun -- Semi-supervised Clustering with Deep Metric Learning -- Spatial Bottleneck Minimum Task Assignment with Time-delay -- A Mimic Learning Method for Disease Risk Prediction with Incomplete Initial Data -- Hospitalization Behavior Prediction Based on Attention and Time Adjustment Factors in Bidirectional LSTM -- Modeling Item Category for Effective Recommendation -- Distributed Reachability Queries on Massive Graphs -- Edge-Based Shortest Path Caching in Road Networks -- Extracting Definitions and Hypernyms with a Two-Phase Framework -- Tag Recommendation by Word-Level Tag Sequence Modeling -- A New Statistics Collecting Method with Adaptive Strategy -- Word Sense Disambiguation with Massive Contextual Texts -- Learning DMEs from Positive and Negative Examples -- Serial and Parallel Recurrent Convolutional Neural Networks for Biomedical Named Entity Recognition -- DRGAN: A GAN-based Framework for Doctor Recommendation in Chinese On-line QA Communities -- Attention-based Abnormal-Aware Fusion Network for Radiology Report Generation -- LearningTour: A Machine Learning Approach for Tour Recommendation based on Users' Historical Travel Experience -- TF-Miner: Topic-specific Facet Mining by Label Propagation -- Fast Raft Replication for Transactional Database Systems over Unreliable Networks -- Parallelizing Big De Bruijn Graph Traversal for Genome Assembly on GPU Clusters -- GScan: Exploiting Sequential Scans for Subgraph Matching -- SIMD Accelerates the Probe Phase of Star Joins in Main Memory Databases -- A Deep Recommendation Model Incorporating Adaptive Knowledge-based Representations -- BLOMA: Explain Collaborative Filtering via Boosted Local Rank-One Matrix Approximation -- Spatiotemporal-Aware Region Recommendation with Deep Metric Learning -- On the Impact of the Length of Subword Vectors on Word Embeddings -- Using Dilated Residual Network to Model Distant Supervision Relation Extraction -- Modeling More Globally: A Hierarchical Attention Network via Multi-Task Learning for Aspect-Based Sentiment Analysis -- A Sparse Matrix-based Join for SPARQL Query Processing -- Change Point Detection for Streaming High-Dimensional time series -- Demo Papers -- Distributed Query Engine for Multiple-Query Optimization over Data Stream -- Adding Value by Combining Business and Sensor Data: An Industry 4.0 Use Case -- AgriKG: An Agricultural Knowledge Graph and Its Applications -- KGVis: An Interactive Visual Query Language for Knowledge Graphs -- OperaMiner: Extracting Character Relations from Opera Scripts using Deep Neural Networks -- GparMiner: A System to mine Graph Pattern Association Rules -- A Data Publishing System Based on Privacy Preservation -- Privacy as a Service: Publishing Data and Models -- Dynamic Bus Route Adjustment Based on Hot Bus Stop Pair Extraction -- DHDSearch: A Framework for Batch Time Series Searching on MapReduce -- Bus Stop Refinement based on Hot Spot Extraction -- Adaptive Transaction Scheduling for Highly Contended Workloads -- IMOptimizer: An OnlineInteractive Parameter Optimization System based on Big Data -- Tutorial Papers -- Cohesive Subgraphs with Hierarchical Decomposition on Big Graphs -- Tracking User Behaviours: Laboratory-Based and In-The-Wild User S -- Mining Knowledge Graphs for Vision Tasks -- Enterprise Knowledge Graph From Specific Business Task to Enterprise Knowledge Management -- Knowledge Graph Data Management -- Deep learning for Healthcare Data Processing. Tipo de medio : Computadora Summary : This book constitutes the workshop proceedings of the 24th International Conference on Database Systems for Advanced Applications, DASFAA 2019, held in Chiang Mai, Thailand, in April 2019. The 14 full papers presented were carefully selected and reviewed from 26 submissions to the three following workshops: the 6th International Workshop on Big Data Management and Service, BDMS 2019; the 4th International Workshop on Big Data Quality Management, BDQM 2019; and the Third International Workshop on Graph Data Management and Analysis, GDMA 2019. This volume also includes the short papers, demo papers, and tutorial papers of the main conference DASFAA 2019. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Database Systems for Advanced Applications : DASFAA 2019 International Workshops: BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April 22–25, 2019, Proceedings / [documento electrónico] / Li, Guoliang, ; Yang, Jun, ; Gama, João, ; Natwichai, Juggapong, ; Tong, Yongxin, . - 1 ed. . - [s.l.] : Springer, 2019 . - XXI, 607 p. 241 ilustraciones, 154 ilustraciones en color.
ISBN : 978-3-030-18590-9
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Gestión de base de datos Procesamiento de datos Software de la aplicacion Inteligencia artificial Red de computadoras Protección de datos MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Redes de comunicación informática Seguridad de datos e información Clasificación: 005.74 Ciencia de los computadores (Archivos de datos y bases de datos) Resumen: Este libro constituye las actas del taller de la 24.ª Conferencia Internacional sobre Sistemas de Bases de Datos para Aplicaciones Avanzadas, DASFAA 2019, celebrada en Chiang Mai, Tailandia, en abril de 2019. Los 14 artÃculos completos presentados fueron cuidadosamente seleccionados y revisados ​​a partir de 26 presentaciones a los tres talleres siguientes. : el VI Taller Internacional sobre Gestión y Servicio de Big Data, BDMS 2019; el 4º Taller Internacional sobre Gestión de Calidad de Big Data, BDQM 2019; y el Tercer Taller Internacional sobre Gestión y Análisis de Datos Gráficos, GDMA 2019. Este volumen también incluye los artÃculos breves, artÃculos de demostración y artÃculos tutoriales de la conferencia principal DASFAA 2019. Nota de contenido: The 6th International Workshop on Big Data Management and Service (BDSM 2019) -- A Probabilistic Approach for Inferring Latent Entity Associations in Textual Web Contents -- UHRP Uncertainty-Based Pruning Method for Anonymized Data Linear Regression -- Meta-path based MiRNA-disease Association Prediction -- Medical Question Retrieval based on Siamese Neural Network and Transfer learning method -- An adaptive Kalman filter based Ocean Wave Prediction Model using Motion Reference Unit Data -- ASLM: Adaptive Single Layer Model for Learned Index -- SparseMAAC: Sparse Attention for Multi-Agent Reinforcement Learning -- The 4th International Workshop on Big Data Quality Management (BDQM 2019) -- Identifying Reference Relationship of Desktop Files Based on Access Logs -- Visualization of Photo Album: Selecting a Representative Photo of a Specific Event -- Data Quality Management in Institutional Research Output Data Center -- Generalized Bayesian Structure Learning from Noisy Datasets.-The Third International Workshop on Graph Data Management and Analysis (GDMA 2019) -- ANDMC: An Algorithm for Author Name Disambiguation Based on Molecular Cross Clustering -- Graph Based Aspect Extraction and Rating Classification of Customer Review Data -- Streaming Massive Electric Power Data Analysis Based on Spark Streaming -- Short Papers -- Deletion Robust k-Coverage Queries -- Episodic Memory Network with Self-Attention for Emotion Detection -- Detecting Suicidal Ideation with Data Protection in Online Communities -- Hierarchical Conceptual Labeling -- Anomaly Detection in Time-Evolving Attributed Networks -- A Multi-task Learning Framework for Automatic Early Detection of Alzheimer's -- Top-k Spatial Keyword Query with Typicality and Semantics -- Align Reviews with Topics in Attention Network for Rating Prediction -- PSMSP: A Parallelized Sampling-based Approach for Mining Top-k Sequential Patterns in Database Graphs -- Value-Oriented Ranking of Online Reviews Based on Reviewer-influenced Graph -- Ancient Chinese Landscape Painting Composition Classification by Using Semantic Variational Autoencoder -- Learning Time-Aware Distributed Representations of Locations from Spatio-Temporal Trajectories -- Hyper2vec: Biased Random Walk for Hyper-Network Embedding -- Privacy-preserving and dynamic spatial range aggregation query processing in wireless sensor networks -- Adversarial Discriminative Denoising for Distant Supervision Relation Extraction -- Nonnegative Spectral Clustering for Large-Scale Semi-Supervised Learning -- Distributed PARAFAC Decomposition Method based on In-Memory Big Data System -- GPU-Accelerated Dynamic Graph Coloring -- Relevance-based Entity Embedding -- An Iterative Map-Trajectory Co-Optimisation Framework Based on Map-Matching and Map Update -- Exploring Regularity in Traditional Chinese Medicine Clinical Data Using Heterogeneous Weighted Networks Embedding -- AGREE: Attentive Tour Group Recommendation with Multi-Modal Data -- Random Decision DAG: An Entropy Based Compression Approach for Random Forest -- Generating Behavior Features for Cold-Start Spam Review Detection -- TCL: Tensor-CNN-LSTM for Travel Time Prediction with Sparse Trajectory Data -- A Semi-supervised Classification Approach for Multiple Time-varying Networks with Total Variation -- Multidimensional Skylines Over Streaming Data -- A domain adaptation approach for multistream classification -- Gradient Boosting Censored Regression for Winning Price Prediction in Real-Time Bidding -- Deep Sequential Multi-task Modeling for Next Check-in Time and Location Prediction -- SemiSync: Semi-supervised Clustering by Synchronization -- Neural Review Rating Prediction with Hierarchical Attentions and Latent Factors -- MVS-match: An Efficient Subsequence Matching Approach Based on the Series Synopsis -- Temporal-Spatial Recommendation for On-demand Cinemas -- Finding the key influences on the house price by Finite Mixture Model based on the real estate data in Changchun -- Semi-supervised Clustering with Deep Metric Learning -- Spatial Bottleneck Minimum Task Assignment with Time-delay -- A Mimic Learning Method for Disease Risk Prediction with Incomplete Initial Data -- Hospitalization Behavior Prediction Based on Attention and Time Adjustment Factors in Bidirectional LSTM -- Modeling Item Category for Effective Recommendation -- Distributed Reachability Queries on Massive Graphs -- Edge-Based Shortest Path Caching in Road Networks -- Extracting Definitions and Hypernyms with a Two-Phase Framework -- Tag Recommendation by Word-Level Tag Sequence Modeling -- A New Statistics Collecting Method with Adaptive Strategy -- Word Sense Disambiguation with Massive Contextual Texts -- Learning DMEs from Positive and Negative Examples -- Serial and Parallel Recurrent Convolutional Neural Networks for Biomedical Named Entity Recognition -- DRGAN: A GAN-based Framework for Doctor Recommendation in Chinese On-line QA Communities -- Attention-based Abnormal-Aware Fusion Network for Radiology Report Generation -- LearningTour: A Machine Learning Approach for Tour Recommendation based on Users' Historical Travel Experience -- TF-Miner: Topic-specific Facet Mining by Label Propagation -- Fast Raft Replication for Transactional Database Systems over Unreliable Networks -- Parallelizing Big De Bruijn Graph Traversal for Genome Assembly on GPU Clusters -- GScan: Exploiting Sequential Scans for Subgraph Matching -- SIMD Accelerates the Probe Phase of Star Joins in Main Memory Databases -- A Deep Recommendation Model Incorporating Adaptive Knowledge-based Representations -- BLOMA: Explain Collaborative Filtering via Boosted Local Rank-One Matrix Approximation -- Spatiotemporal-Aware Region Recommendation with Deep Metric Learning -- On the Impact of the Length of Subword Vectors on Word Embeddings -- Using Dilated Residual Network to Model Distant Supervision Relation Extraction -- Modeling More Globally: A Hierarchical Attention Network via Multi-Task Learning for Aspect-Based Sentiment Analysis -- A Sparse Matrix-based Join for SPARQL Query Processing -- Change Point Detection for Streaming High-Dimensional time series -- Demo Papers -- Distributed Query Engine for Multiple-Query Optimization over Data Stream -- Adding Value by Combining Business and Sensor Data: An Industry 4.0 Use Case -- AgriKG: An Agricultural Knowledge Graph and Its Applications -- KGVis: An Interactive Visual Query Language for Knowledge Graphs -- OperaMiner: Extracting Character Relations from Opera Scripts using Deep Neural Networks -- GparMiner: A System to mine Graph Pattern Association Rules -- A Data Publishing System Based on Privacy Preservation -- Privacy as a Service: Publishing Data and Models -- Dynamic Bus Route Adjustment Based on Hot Bus Stop Pair Extraction -- DHDSearch: A Framework for Batch Time Series Searching on MapReduce -- Bus Stop Refinement based on Hot Spot Extraction -- Adaptive Transaction Scheduling for Highly Contended Workloads -- IMOptimizer: An OnlineInteractive Parameter Optimization System based on Big Data -- Tutorial Papers -- Cohesive Subgraphs with Hierarchical Decomposition on Big Graphs -- Tracking User Behaviours: Laboratory-Based and In-The-Wild User S -- Mining Knowledge Graphs for Vision Tasks -- Enterprise Knowledge Graph From Specific Business Task to Enterprise Knowledge Management -- Knowledge Graph Data Management -- Deep learning for Healthcare Data Processing. Tipo de medio : Computadora Summary : This book constitutes the workshop proceedings of the 24th International Conference on Database Systems for Advanced Applications, DASFAA 2019, held in Chiang Mai, Thailand, in April 2019. The 14 full papers presented were carefully selected and reviewed from 26 submissions to the three following workshops: the 6th International Workshop on Big Data Management and Service, BDMS 2019; the 4th International Workshop on Big Data Quality Management, BDQM 2019; and the Third International Workshop on Graph Data Management and Analysis, GDMA 2019. This volume also includes the short papers, demo papers, and tutorial papers of the main conference DASFAA 2019. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] ECML PKDD 2018 Workshops / Monreale, Anna ; Alzate, Carlos ; Kamp, Michael ; Krishnamurthy, Yamuna ; Paurat, Daniel ; Sayed-Mouchaweh, Moamar ; Bifet, Albert ; Gama, João ; Ribeiro, Rita P.
TÃtulo : ECML PKDD 2018 Workshops : DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers Tipo de documento: documento electrónico Autores: Monreale, Anna, ; Alzate, Carlos, ; Kamp, Michael, ; Krishnamurthy, Yamuna, ; Paurat, Daniel, ; Sayed-Mouchaweh, Moamar, ; Bifet, Albert, ; Gama, João, ; Ribeiro, Rita P., Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: IX, 127 p. 43 ilustraciones, 27 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-14880-5 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia artificial Procesamiento de datos Sistemas de almacenamiento y recuperación de información. Red de computadoras MinerÃa de datos y descubrimiento de conocimientos Almacenamiento y recuperación de información Redes de comunicación informática Clasificación: 006.3 Resumen: Este libro constituye una selección revisada de artÃculos de los talleres DMLE e IoTStream, celebrados en la 18.ª Conferencia Europea sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD 2018, en DublÃn, Irlanda, en septiembre de 2018. Los 8 artÃculos completos presentados en este volumen fueron cuidadosamente revisado y seleccionado entre un total de 12 presentaciones. Los talleres incluidos son: DMLE 2018: Primer Taller sobre Aprendizaje Automático Descentralizado en el Edge IoTStream 2018: 3er Taller sobre Aprendizaje Automático a Gran Escala de IoT a partir de Flujos de Datos. Tipo de medio : Computadora Summary : This book constitutes revised selected papers from the workshops DMLE and IoTStream, held at the 18thEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. The 8 full papers presented in this volume were carefully reviewed and selected from a total of 12 submissions. The workshops included are: DMLE 2018: First Workshop on Decentralized Machine Learning at the Edge IoTStream 2018: 3rd Workshop on IoT Large Scale Machine Learning from Data Streams. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] ECML PKDD 2018 Workshops : DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers [documento electrónico] / Monreale, Anna, ; Alzate, Carlos, ; Kamp, Michael, ; Krishnamurthy, Yamuna, ; Paurat, Daniel, ; Sayed-Mouchaweh, Moamar, ; Bifet, Albert, ; Gama, João, ; Ribeiro, Rita P., . - 1 ed. . - [s.l.] : Springer, 2019 . - IX, 127 p. 43 ilustraciones, 27 ilustraciones en color.
ISBN : 978-3-030-14880-5
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia artificial Procesamiento de datos Sistemas de almacenamiento y recuperación de información. Red de computadoras MinerÃa de datos y descubrimiento de conocimientos Almacenamiento y recuperación de información Redes de comunicación informática Clasificación: 006.3 Resumen: Este libro constituye una selección revisada de artÃculos de los talleres DMLE e IoTStream, celebrados en la 18.ª Conferencia Europea sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD 2018, en DublÃn, Irlanda, en septiembre de 2018. Los 8 artÃculos completos presentados en este volumen fueron cuidadosamente revisado y seleccionado entre un total de 12 presentaciones. Los talleres incluidos son: DMLE 2018: Primer Taller sobre Aprendizaje Automático Descentralizado en el Edge IoTStream 2018: 3er Taller sobre Aprendizaje Automático a Gran Escala de IoT a partir de Flujos de Datos. Tipo de medio : Computadora Summary : This book constitutes revised selected papers from the workshops DMLE and IoTStream, held at the 18thEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018. The 8 full papers presented in this volume were carefully reviewed and selected from a total of 12 submissions. The workshops included are: DMLE 2018: First Workshop on Decentralized Machine Learning at the Edge IoTStream 2018: 3rd Workshop on IoT Large Scale Machine Learning from Data Streams. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] ECML PKDD 2020 Workshops / Koprinska, Irena ; Kamp, Michael ; Appice, Annalisa ; Loglisci, Corrado ; Antonie, Luiza ; Zimmermann, Albrecht ; Guidotti, Riccardo ; Özgöbek, Özlem ; Ribeiro, Rita P. ; Gavaldà , Ricard ; Gama, João ; Adilova, Linara ; Krishnamurthy, Yamuna ; Ferreira, Pedro M. ; Malerba, Donato ; Medeiros, Ibéria ; Ceci, Michelangelo ; Manco, Giuseppe ; Masciari, Elio ; Ras, Zbigniew W. ; Christen, Peter ; Ntoutsi, Eirini ; Schubert, Erich ; Zimek, Arthur ; Monreale, Anna ; Biecek, Przemyslaw ; Rinzivillo, Salvatore ; Kille, Benjamin ; Lommatzsch, Andreas ; Gulla, Jon Atle
PermalinkIoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning / Gama, João ; Pashami, Sepideh ; Bifet, Albert ; Sayed-Mouchawe, Moamar ; Fröning, Holger ; Pernkopf, Franz ; Schiele, Gregor ; Blott, Michaela
PermalinkMachine Learning and Principles and Practice of Knowledge Discovery in Databases / Kamp, Michael ; Koprinska, Irena ; Bibal, Adrien ; Bouadi, Tassadit ; Frénay, Benoît ; Galárraga, Luis ; Oramas, José ; Adilova, Linara ; Krishnamurthy, Yamuna ; Kang, Bo ; Largeron, Christine ; Lijffijt, Jefrey ; Viard, Tiphaine ; Welke, Pascal ; Ruocco, Massimiliano ; Aune, Erlend ; Gallicchio, Claudio ; Schiele, Gregor ; Pernkopf, Franz ; Blott, Michaela ; Fröning, Holger ; Schindler, Günther ; Guidotti, Riccardo ; Monreale, Anna ; Rinzivillo, Salvatore ; Biecek, Przemyslaw ; Ntoutsi, Eirini ; Pechenizkiy, Mykola ; Rosenhahn, Bodo ; Buckley, Christopher ; Cialfi, Daniela ; Lanillos, Pablo ; Ramstead, Maxwell ; Verbelen, Tim ; Ferreira, Pedro M. ; Andresini, Giuseppina ; Malerba, Donato ; Medeiros, Ibéria ; Fournier-Viger, Philippe ; Nawaz, M. Saqib ; Ventura, Sebastian ; Sun, Meng ; Zhou, Min ; Bitetta, Valerio ; Bordino, Ilaria ; Ferretti, Andrea ; Gullo, Francesco ; Ponti, Giovanni ; Severini, Lorenzo ; Ribeiro, Rita ; Gama, João ; Gavaldà , Ricard ; Cooper, Lee ; Ghazaleh, Naghmeh ; Richiardi, Jonas ; Roqueiro, Damian ; Saldana Miranda, Diego ; Sechidis, Konstantinos ; Graça, Guilherme
PermalinkMachine Learning and Principles and Practice of Knowledge Discovery in Databases / Kamp, Michael ; Koprinska, Irena ; Bibal, Adrien ; Bouadi, Tassadit ; Frénay, Benoît ; Galárraga, Luis ; Oramas, José ; Adilova, Linara ; Krishnamurthy, Yamuna ; Kang, Bo ; Largeron, Christine ; Lijffijt, Jefrey ; Viard, Tiphaine ; Welke, Pascal ; Ruocco, Massimiliano ; Aune, Erlend ; Gallicchio, Claudio ; Schiele, Gregor ; Pernkopf, Franz ; Blott, Michaela ; Fröning, Holger ; Schindler, Günther ; Guidotti, Riccardo ; Monreale, Anna ; Rinzivillo, Salvatore ; Biecek, Przemyslaw ; Ntoutsi, Eirini ; Pechenizkiy, Mykola ; Rosenhahn, Bodo ; Buckley, Christopher ; Cialfi, Daniela ; Lanillos, Pablo ; Ramstead, Maxwell ; Verbelen, Tim ; Ferreira, Pedro M. ; Andresini, Giuseppina ; Malerba, Donato ; Medeiros, Ibéria ; Fournier-Viger, Philippe ; Nawaz, M. Saqib ; Ventura, Sebastian ; Sun, Meng ; Zhou, Min ; Bitetta, Valerio ; Bordino, Ilaria ; Ferretti, Andrea ; Gullo, Francesco ; Ponti, Giovanni ; Severini, Lorenzo ; Ribeiro, Rita ; Gama, João ; Gavaldà , Ricard ; Cooper, Lee ; Ghazaleh, Naghmeh ; Richiardi, Jonas ; Roqueiro, Damian ; Saldana Miranda, Diego ; Sechidis, Konstantinos ; Graça, Guilherme
PermalinkProgress in Artificial Intelligence / Oliveira, Eugénio ; Gama, João ; Vale, Zita ; Lopes Cardoso, Henrique
Permalink