Información del autor
Autor K G, Srinivasa |
Documentos disponibles escritos por este autor (1)
Crear una solicitud de compra Refinar búsqueda
TÃtulo : A Beginner's Guide to Learning Analytics Tipo de documento: documento electrónico Autores: K G, Srinivasa, ; Kurni, Muralidhar, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XIII, 326 p. 40 ilustraciones, 38 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-70258-8 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Tecnologia Educacional Educación Digital y TecnologÃa Educativa Computadoras y Educación Clasificación: 371.33 Resumen: Este libro Una guÃa para principiantes sobre análisis del aprendizaje está diseñado para satisfacer las necesidades de las tendencias educativas modernas. Está dirigido a lectores que no tienen conocimientos previos sobre análisis de aprendizaje y funciona como un texto introductorio a análisis de aprendizaje para aquellos que desean hacer más con la evaluación en sus organizaciones. El libro es útil para todos aquellos que necesitan evaluar sus estrategias de aprendizaje y enseñanza. Su objetivo es brindar una mayor eficiencia y un compromiso más profundo a los estudiantes individuales, las comunidades de aprendizaje y los educadores. Aquà se tratan los conceptos clave vinculados a la analÃtica del aprendizaje para investigadores y profesionales interesados ​​en la analÃtica del aprendizaje. Este libro ayuda a quienes desean aplicar la analÃtica a los programas de aprendizaje y desarrollo y ayuda a las instituciones educativas a identificar a los estudiantes que requieren apoyo y brindar una experiencia de aprendizaje más personalizada. Los capÃtulos similares muestran diversos usos de la analÃtica del aprendizaje para mejorar el desempeño de los estudiantes y profesores. Presenta un marco coherente para la traducción efectiva de la investigación de análisis de aprendizaje para la práctica educativa a su aplicación práctica en diferentes dominios educativos. Este libro proporciona a los educadores e investigadores las herramientas y los marcos para entender y utilizar de manera efectiva los datos y el análisis en su práctica diaria. Este libro será una valiosa adición a las estanterÃas de los investigadores. Nota de contenido: Chapter 1 -- Introduction to Learning Analytics -- 1.1. Introduction to Learning Analytics -- 1.2. Learning analytics: A new and rapidly developing field -- 1.3. Benefits and Challenges of learning analytics -- 1.4. Ethical Concerns with Learning Analytics -- 1.5. Use of Learning analytics -- 1.6. Conclusion -- 1.7. Review Questions -- Chapter 2 Educational Data Mining & Learning Analytics -- 2.1. Introduction -- 2.2. Educational Data Mining (EDM) -- 2.3. Educational Data Mining & Learning analytics -- 2.4. Educational Data Mining & Learning analytics Applications -- 2.5. Conclusion -- 2.6. Review Questions -- Chapter 3.-Preparing for Learning Analytics -- 3.1. Introduction -- 3.2. Role of Psychology in Learning analytics -- 3.3. Architecting the learning analytics environment -- 3.4. Major Barriers for adopting Learning Analytics.-3.5. Case Studies -- 3.6. Conclusion -- 3.7. Review Questions -- Chapter 4. Data requirements for Learning analytics -- 4.1. Introduction -- 4.2. Types of data used for Learning Analytics -- 4.3. Data Models used to represent usage data for Learning analytics -- 4.4. Data Privacy maintenance in Learning analytics -- 4.5. Case Studies -- 4.6. Conclusion -- 4.7. Review Questions -- Chapter 5. Tools for Learning Analytics -- 5.1. Introduction -- 5.2. Popular Learning Analytics Tools -- 5.3. Choosing a Tool -- 5.4. Strategies to Successfully Deploy a Tool -- 5.5. Exploring Learning Analytics Tools -- 5.6. Case Studies -- 5.7. Developing a Learning analytics Tool -- 5.8. Conclusion -- 5.9. Review Questions.-Chapter 6 -- Other Technology Approaches to Learning Analytics -- 6.1. Introduction -- 6.2. Big Data & Learning Analytics -- 6.3. Data Science & Learning Analytics -- 6.4. AI & Learning Analytics -- 6.5. Machine Learning & Learning Analytics -- 6.6. Deep Learning & Learning Analytics -- 6.7. Case Studies -- 6.8. Conclusion -- 6.9. Review Questions -- Chapter 7 -- Learning Analytics in Massive Open Online Courses -- 7.1 Introduction to MOOCs -- 7.2. From MOOCs to Learning analytics -- 7.3. Integrating Learning analytics with MOOCs -- 7.4. Benefits of applying Learning Analytics in MOOCs -- 7.5. Major Concerns of implementing Learning Analytics in MOOCs -- 7.6. Limitation of Applying Learning Analytics in MOOCs -- 7.7. Tools that support Leaning analytics in MOOCs -- 7.8. Case Studies -- 7.9. Conclusion -- 7.10. Review Questions -- Chapter 8 -- The Pedagogical perspective of Learning Analytics -- 8.1. Introduction to Pedagogy -- 8.2. Learning Analytics based Pedagogical Framework -- 8.3. Pedagogical Interventions -- 8.4. Learning Analytics based Pedagogical Models -- 8.5. Case studies -- 8.6. Conclusion -- 8.7. Review Questions -- Chapter 9. Moving Forward -- 9.1. Self-Learning and Learning analytics -- 9.2. Lifelong learning and learning analytics -- 9.3. Present and future trend of learning analytics in the world -- 9.4. Measuring 21st Century Skills using Learning analytics -- 9.5. Moving Forward -- 9.6. Smart Learning analytics -- 9.7. Case Studies -- 9.8. Conclusion -- 9.9. Review Questions.-Chapter 10 -- Case Studies -- 10.1. Recommender systems using learning analytics -- 10.2. Learning Analytics in Higher Education -- 10.3. Other Evidences on the use of Learning Analytics -- Chapter 11. Problems. Tipo de medio : Computadora Summary : This book A Beginner's Guide to Learning Analytics is designed to meet modern educational trends' needs. It is addressed to readers who have no prior knowledge of learning analytics and functions as an introductory text to learning analytics for those who want to do more with evaluation/assessment in their organizations. The book is useful to all who need to evaluate their learning and teaching strategies. It aims to bring greater efficiency and deeper engagement to individual students, learning communities, and educators. Covered here are the key concepts linked to learning analytics for researchers and practitioners interested in learning analytics. This book helps those who want to apply analytics to learning and development programs and helps educational institutions to identify learners who require support and provide a more personalized learning experience. Like chapters show diverse uses of learning analytics to enhance student and faculty performance. It presents a coherent framework for the effective translation of learning analytics research for educational practice to its practical application in different educational domains. This book provides educators and researchers with the tools and frameworks to effectively make sense of and use data and analytics in their everyday practice. This book will be a valuable addition to researchers' bookshelves. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] A Beginner's Guide to Learning Analytics [documento electrónico] / K G, Srinivasa, ; Kurni, Muralidhar, . - 1 ed. . - [s.l.] : Springer, 2021 . - XIII, 326 p. 40 ilustraciones, 38 ilustraciones en color.
ISBN : 978-3-030-70258-8
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Tecnologia Educacional Educación Digital y TecnologÃa Educativa Computadoras y Educación Clasificación: 371.33 Resumen: Este libro Una guÃa para principiantes sobre análisis del aprendizaje está diseñado para satisfacer las necesidades de las tendencias educativas modernas. Está dirigido a lectores que no tienen conocimientos previos sobre análisis de aprendizaje y funciona como un texto introductorio a análisis de aprendizaje para aquellos que desean hacer más con la evaluación en sus organizaciones. El libro es útil para todos aquellos que necesitan evaluar sus estrategias de aprendizaje y enseñanza. Su objetivo es brindar una mayor eficiencia y un compromiso más profundo a los estudiantes individuales, las comunidades de aprendizaje y los educadores. Aquà se tratan los conceptos clave vinculados a la analÃtica del aprendizaje para investigadores y profesionales interesados ​​en la analÃtica del aprendizaje. Este libro ayuda a quienes desean aplicar la analÃtica a los programas de aprendizaje y desarrollo y ayuda a las instituciones educativas a identificar a los estudiantes que requieren apoyo y brindar una experiencia de aprendizaje más personalizada. Los capÃtulos similares muestran diversos usos de la analÃtica del aprendizaje para mejorar el desempeño de los estudiantes y profesores. Presenta un marco coherente para la traducción efectiva de la investigación de análisis de aprendizaje para la práctica educativa a su aplicación práctica en diferentes dominios educativos. Este libro proporciona a los educadores e investigadores las herramientas y los marcos para entender y utilizar de manera efectiva los datos y el análisis en su práctica diaria. Este libro será una valiosa adición a las estanterÃas de los investigadores. Nota de contenido: Chapter 1 -- Introduction to Learning Analytics -- 1.1. Introduction to Learning Analytics -- 1.2. Learning analytics: A new and rapidly developing field -- 1.3. Benefits and Challenges of learning analytics -- 1.4. Ethical Concerns with Learning Analytics -- 1.5. Use of Learning analytics -- 1.6. Conclusion -- 1.7. Review Questions -- Chapter 2 Educational Data Mining & Learning Analytics -- 2.1. Introduction -- 2.2. Educational Data Mining (EDM) -- 2.3. Educational Data Mining & Learning analytics -- 2.4. Educational Data Mining & Learning analytics Applications -- 2.5. Conclusion -- 2.6. Review Questions -- Chapter 3.-Preparing for Learning Analytics -- 3.1. Introduction -- 3.2. Role of Psychology in Learning analytics -- 3.3. Architecting the learning analytics environment -- 3.4. Major Barriers for adopting Learning Analytics.-3.5. Case Studies -- 3.6. Conclusion -- 3.7. Review Questions -- Chapter 4. Data requirements for Learning analytics -- 4.1. Introduction -- 4.2. Types of data used for Learning Analytics -- 4.3. Data Models used to represent usage data for Learning analytics -- 4.4. Data Privacy maintenance in Learning analytics -- 4.5. Case Studies -- 4.6. Conclusion -- 4.7. Review Questions -- Chapter 5. Tools for Learning Analytics -- 5.1. Introduction -- 5.2. Popular Learning Analytics Tools -- 5.3. Choosing a Tool -- 5.4. Strategies to Successfully Deploy a Tool -- 5.5. Exploring Learning Analytics Tools -- 5.6. Case Studies -- 5.7. Developing a Learning analytics Tool -- 5.8. Conclusion -- 5.9. Review Questions.-Chapter 6 -- Other Technology Approaches to Learning Analytics -- 6.1. Introduction -- 6.2. Big Data & Learning Analytics -- 6.3. Data Science & Learning Analytics -- 6.4. AI & Learning Analytics -- 6.5. Machine Learning & Learning Analytics -- 6.6. Deep Learning & Learning Analytics -- 6.7. Case Studies -- 6.8. Conclusion -- 6.9. Review Questions -- Chapter 7 -- Learning Analytics in Massive Open Online Courses -- 7.1 Introduction to MOOCs -- 7.2. From MOOCs to Learning analytics -- 7.3. Integrating Learning analytics with MOOCs -- 7.4. Benefits of applying Learning Analytics in MOOCs -- 7.5. Major Concerns of implementing Learning Analytics in MOOCs -- 7.6. Limitation of Applying Learning Analytics in MOOCs -- 7.7. Tools that support Leaning analytics in MOOCs -- 7.8. Case Studies -- 7.9. Conclusion -- 7.10. Review Questions -- Chapter 8 -- The Pedagogical perspective of Learning Analytics -- 8.1. Introduction to Pedagogy -- 8.2. Learning Analytics based Pedagogical Framework -- 8.3. Pedagogical Interventions -- 8.4. Learning Analytics based Pedagogical Models -- 8.5. Case studies -- 8.6. Conclusion -- 8.7. Review Questions -- Chapter 9. Moving Forward -- 9.1. Self-Learning and Learning analytics -- 9.2. Lifelong learning and learning analytics -- 9.3. Present and future trend of learning analytics in the world -- 9.4. Measuring 21st Century Skills using Learning analytics -- 9.5. Moving Forward -- 9.6. Smart Learning analytics -- 9.7. Case Studies -- 9.8. Conclusion -- 9.9. Review Questions.-Chapter 10 -- Case Studies -- 10.1. Recommender systems using learning analytics -- 10.2. Learning Analytics in Higher Education -- 10.3. Other Evidences on the use of Learning Analytics -- Chapter 11. Problems. Tipo de medio : Computadora Summary : This book A Beginner's Guide to Learning Analytics is designed to meet modern educational trends' needs. It is addressed to readers who have no prior knowledge of learning analytics and functions as an introductory text to learning analytics for those who want to do more with evaluation/assessment in their organizations. The book is useful to all who need to evaluate their learning and teaching strategies. It aims to bring greater efficiency and deeper engagement to individual students, learning communities, and educators. Covered here are the key concepts linked to learning analytics for researchers and practitioners interested in learning analytics. This book helps those who want to apply analytics to learning and development programs and helps educational institutions to identify learners who require support and provide a more personalized learning experience. Like chapters show diverse uses of learning analytics to enhance student and faculty performance. It presents a coherent framework for the effective translation of learning analytics research for educational practice to its practical application in different educational domains. This book provides educators and researchers with the tools and frameworks to effectively make sense of and use data and analytics in their everyday practice. This book will be a valuable addition to researchers' bookshelves. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]