Información del autor
Autor Liu, Cheng-Lin |
Documentos disponibles escritos por este autor (14)
Crear una solicitud de compra Refinar búsqueda
Advances in Brain Inspired Cognitive Systems / Ren, Jinchang ; Hussain, Amir ; Zheng, Jiangbin ; Liu, Cheng-Lin ; Luo, Bin ; Zhao, Huimin ; Zhao, Xinbo
TÃtulo : Advances in Brain Inspired Cognitive Systems : 9th International Conference, BICS 2018, Xi'an, China, July 7-8, 2018, Proceedings Tipo de documento: documento electrónico Autores: Ren, Jinchang, ; Hussain, Amir, ; Zheng, Jiangbin, ; Liu, Cheng-Lin, ; Luo, Bin, ; Zhao, Huimin, ; Zhao, Xinbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2018 Número de páginas: XVIII, 870 p. 362 ilustraciones ISBN/ISSN/DL: 978-3-030-00563-4 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia artificial Visión por computador Red de computadoras Protección de datos IngenierÃa Informática Algoritmos Redes de comunicación informática Seguridad de datos e información IngenierÃa Informática y Redes Clasificación: 006.3 Resumen: Este libro constituye las actas arbitradas de la 9.ª Conferencia Internacional sobre Avances en Sistemas Cognitivos Inspirados en el Cerebro, BICS 2018, celebrada en Xi''an, China, en julio de 2018. Los 83 artÃculos presentados en este volumen fueron cuidadosamente revisados ​​y seleccionados entre 137 presentaciones. Los artÃculos se organizaron en secciones temáticas denominadas: computación neuronal; sistemas de inspiración biológica; reconocimiento de imágenes: detección, seguimiento y clasificación; análisis de datos y procesamiento de lenguaje natural; y aplicaciones. Nota de contenido: Neural Computation -- Style Neutralization Generative Adversarial Classifier -- How Good a Shadow Neural Network is for Solving Non-linear Decision Making Problems -- Predicting Seminal Quality using Back-Propagation Neural Networks with Optimal Feature Subsets -- Deep Learning based Recommendation Algorithm in Online Medical Platform -- The Prediction Model of Saccade Target Based on LSTM-CRF for Chinese Reading -- Visual Cognition Inspired Vehicle Re-identification via Correlative Sparse Ranking with Multi-view Deep Features -- Fully Automatic Synaptic Cleft Detection and Segmentation From EM Images based on Deep Learning -- Deep Background Subtraction of Thermal and Visible Imagery for Pedestrian Detection in Videos -- Recent Advances in Deep Learning for Single Image Super-Resolution -- Using GAN to augment the synthesizing images from 3D models -- Deep Learning Based Single Image Super-resolution: A Survey -- DAU-GAN: Unsupervised object transfiguration via Deep Attention Unit -- Gravitational Search Optimized Hyperspectral Image Classification with Multilayer Perceptron -- 3-D Gabor Convolutional Neural Network for Damage Mapping from Post-earthquake High Resolution Images -- Biologically Inspired Systems -- A study of the role of attention in classifying covert and overt motor activities -- Attend to Knowledge: Memory-enhanced Attention Network for Image Captioning -- Direction Guided Cooperative Coevolutionary Differential Evolution Algorithm for Cognitive Modelling of Ray Tracing in Separable High Dimensional Space -- P300 brain waves instigated semi supervised video surveillance for inclusive security systems -- Motor Imagery EEG Recognition Based on FBCSP and PCA -- A Hybrid Brain-Computer Interface System Based on Motor Imageries and Eye-blinking -- Goal-directed behavior control based on the mechanism of neuromodulation -- Automated analysis of chest radiographs for cystic fibrosis scoring -- Mismatching Elimination Algorithm in SIFT Based on Function Fitting -- Novel GroupVariable Selection for Salient Skull Region Selection and Sex Determination -- AFSnet: Fixation Prediction in Movie Scenes with Auxiliary Facial Saliency -- A Visual Attention Model based on Human Visual Cognition -- An Extended Common Spatial Pattern Framework for EEG-Based Emotion Classification -- CSA-DE/EDA: A Clonal Selection Algorithm Using Differential Evolution and Estimation of Distribution Algorithm -- Early Identification of Alzheimer's Disease Using An Ensemble of 3D Convolutional Neural Networks and Magnetic Resonance Imaging -- Image Recognition: Detection, Tracking and Classification -- A Novel Semi-Supervised Classification Method Based on Class Certainty of Samples -- Texture Profiles and Composite Kernel Frame for Hyperspectral Image Classification -- High-resolution Image Classification using the Dynamic Differential Evolutionary Algorithm Optimized Multi-Scale Kernel Support Vector Machine Method -- Eigenface Algorithm-Based Facial Expression Recognition in Conversations - AnExperimental Study -- Unsupervised Hyperspectral Band Selection Based on maximum Information Entropy and Determinantal Point Process -- Dense Pyramid Network for Semantic Segmentation of High Resolution Aerial Imagery -- Gaussian-Staple for Robust Visual Object Real-Time Tracking -- Saliency-Weighted Global-Local Fusion for Person Re-identification -- Spectral and Spatial Kernel Extreme Learning Machine for Hyperspectral Image Classification -- Local-Global Extraction Unit for Person Re-Identification -- Robust image corner detection based on maximum point–to–chord distance -- Fabric Defect Detection based on Sparse Representation Image Decomposition -- Salient Superpixel Visual Tracking with Coarse-to-Fine Segmentation and Manifold Ranking -- A Regenerated Feature Extraction Method for Cross-modal Image Registration -- Bottom-up Saliency Prediction by Simulating End-stopping with Log-Gabor -- Learning Collaborative Sparse Correlation Filter for Real-time Multispectral Object Tracking -- SaliencyDetection via Multi-view Synchronized Manifold Ranking -- Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update -- Saliency Detection via Bidirectional Absorbing Markov Chain -- Pedestrian Detection Based on HOG,LBP Features and Visual Saliency -- Data Analysis and Natural Language Processing -- Hadoop Massive Small File Merging Technology Based on Visiting Hot-spot and Associated File Optimization -- A Reversible Data Hiding Scheme Using Compressive Sensing and Random Embedding -- An Abnormal Behavior Clustering Algorithm Based on K-means -- Manifold-regularized Adaptive Lasso -- SentiALG: Automated Corpus Annotation for Algerian Sentiment Analysis -- Self-Validated Story Segmentation of Chinese Broadcast News -- Improved Big Data Analytics Solution Using Deep Learning Model and Real-Time Sentiment Data Analysis Approach -- A Semi-Supervised Corpus Annotation for Saudi Sentiment Analysis using Twitter -- Exploiting Deep Learning for Persian Sentiment Analysis -- Big DataAnalytics and Mining for Crime Data Analysis, Visualization and Prediction -- Comparison of Sentiment analysis approaches using modern Arabic and Sudanese Dialect -- An Intelligent Question Answering System for University Courses Based on BiLSTM and Keywords Similarity -- A Method for Calculating Patent Similarity Using Patent Model Tree Based on Neural Network -- An Optimal Solution of Storing and Processing Small Image Files on Hadoop -- A Big Data Analytics Platform for Information Sharing in the Connection between Administrative Law and Criminal Justice -- Applications -- RST I Invariant W Watermarking S Scheme Using Genetic Algorithm and DWT-SVD -- Application of VPN Based on L2TP and User's Access Rights in Campus Network -- Improved reversible data hiding in JPEG images based on interval correlation -- Representing RCPBAC(Role-Involved Conditional Purpose-based Access Control) in Ontology and SWRL -- Real-time Image Deformation Using Locally-weighted Moving Least Squares -- Machine-learning-based Malware Detection for Virtual Machine by Analyzing Opcode Sequence -- A Trusted Connection Authentication Reinforced By Bayes Algorithm -- A Proactive Caching Strategy Based on Deep Learning in EPC of 5G -- Dynamic Hybrid Approaching for Robust Hand-Eye Calibration -- Statistical Analysis Driven Optimized Deep Learning System for Intrusion Detection -- Comparing Event Related Arousal-Valence and Focus among Different Viewing Perspectives in VR gaming -- A Novel Loop Subdivision for Continuity Surface -- Making Industrial Robots Smarter with Adaptive Reasoning and Autonomous Thinking for Real-Time Tasks in Dynamic Environments: A Case Study -- Shading Structure-Guided Depth Image Restoration -- Machine Learning for Muon Imaging -- Night View Road Scene Enhancement based on Mixed Multi-Scale Retinex and Fractional differentiation -- Traffic Image defogging based on Bit-plane Decomposition -- The Simulation of Non-Gaussian Scattering on Rough Sea Surface -- Distributed Multi-node of Fuzzy Control Considering Adjacent Node Effect for Temperature Control -- An Improved Tentative Q learning Algorithm for Robot Learning. . Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 9th International Conference on Advances in Brain Inspired Cognitive Systems, BICS 2018, held in Xi'an, China, in July 2018. The 83 papers presented in this volume were carefully reviewed and selected from 137 submissions. The papers were organized in topical sections named: neural computation; biologically inspired systems; image recognition: detection, tracking and classification; data analysis and natural language processing; and applications. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Advances in Brain Inspired Cognitive Systems : 9th International Conference, BICS 2018, Xi'an, China, July 7-8, 2018, Proceedings [documento electrónico] / Ren, Jinchang, ; Hussain, Amir, ; Zheng, Jiangbin, ; Liu, Cheng-Lin, ; Luo, Bin, ; Zhao, Huimin, ; Zhao, Xinbo, . - 1 ed. . - [s.l.] : Springer, 2018 . - XVIII, 870 p. 362 ilustraciones.
ISBN : 978-3-030-00563-4
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia artificial Visión por computador Red de computadoras Protección de datos IngenierÃa Informática Algoritmos Redes de comunicación informática Seguridad de datos e información IngenierÃa Informática y Redes Clasificación: 006.3 Resumen: Este libro constituye las actas arbitradas de la 9.ª Conferencia Internacional sobre Avances en Sistemas Cognitivos Inspirados en el Cerebro, BICS 2018, celebrada en Xi''an, China, en julio de 2018. Los 83 artÃculos presentados en este volumen fueron cuidadosamente revisados ​​y seleccionados entre 137 presentaciones. Los artÃculos se organizaron en secciones temáticas denominadas: computación neuronal; sistemas de inspiración biológica; reconocimiento de imágenes: detección, seguimiento y clasificación; análisis de datos y procesamiento de lenguaje natural; y aplicaciones. Nota de contenido: Neural Computation -- Style Neutralization Generative Adversarial Classifier -- How Good a Shadow Neural Network is for Solving Non-linear Decision Making Problems -- Predicting Seminal Quality using Back-Propagation Neural Networks with Optimal Feature Subsets -- Deep Learning based Recommendation Algorithm in Online Medical Platform -- The Prediction Model of Saccade Target Based on LSTM-CRF for Chinese Reading -- Visual Cognition Inspired Vehicle Re-identification via Correlative Sparse Ranking with Multi-view Deep Features -- Fully Automatic Synaptic Cleft Detection and Segmentation From EM Images based on Deep Learning -- Deep Background Subtraction of Thermal and Visible Imagery for Pedestrian Detection in Videos -- Recent Advances in Deep Learning for Single Image Super-Resolution -- Using GAN to augment the synthesizing images from 3D models -- Deep Learning Based Single Image Super-resolution: A Survey -- DAU-GAN: Unsupervised object transfiguration via Deep Attention Unit -- Gravitational Search Optimized Hyperspectral Image Classification with Multilayer Perceptron -- 3-D Gabor Convolutional Neural Network for Damage Mapping from Post-earthquake High Resolution Images -- Biologically Inspired Systems -- A study of the role of attention in classifying covert and overt motor activities -- Attend to Knowledge: Memory-enhanced Attention Network for Image Captioning -- Direction Guided Cooperative Coevolutionary Differential Evolution Algorithm for Cognitive Modelling of Ray Tracing in Separable High Dimensional Space -- P300 brain waves instigated semi supervised video surveillance for inclusive security systems -- Motor Imagery EEG Recognition Based on FBCSP and PCA -- A Hybrid Brain-Computer Interface System Based on Motor Imageries and Eye-blinking -- Goal-directed behavior control based on the mechanism of neuromodulation -- Automated analysis of chest radiographs for cystic fibrosis scoring -- Mismatching Elimination Algorithm in SIFT Based on Function Fitting -- Novel GroupVariable Selection for Salient Skull Region Selection and Sex Determination -- AFSnet: Fixation Prediction in Movie Scenes with Auxiliary Facial Saliency -- A Visual Attention Model based on Human Visual Cognition -- An Extended Common Spatial Pattern Framework for EEG-Based Emotion Classification -- CSA-DE/EDA: A Clonal Selection Algorithm Using Differential Evolution and Estimation of Distribution Algorithm -- Early Identification of Alzheimer's Disease Using An Ensemble of 3D Convolutional Neural Networks and Magnetic Resonance Imaging -- Image Recognition: Detection, Tracking and Classification -- A Novel Semi-Supervised Classification Method Based on Class Certainty of Samples -- Texture Profiles and Composite Kernel Frame for Hyperspectral Image Classification -- High-resolution Image Classification using the Dynamic Differential Evolutionary Algorithm Optimized Multi-Scale Kernel Support Vector Machine Method -- Eigenface Algorithm-Based Facial Expression Recognition in Conversations - AnExperimental Study -- Unsupervised Hyperspectral Band Selection Based on maximum Information Entropy and Determinantal Point Process -- Dense Pyramid Network for Semantic Segmentation of High Resolution Aerial Imagery -- Gaussian-Staple for Robust Visual Object Real-Time Tracking -- Saliency-Weighted Global-Local Fusion for Person Re-identification -- Spectral and Spatial Kernel Extreme Learning Machine for Hyperspectral Image Classification -- Local-Global Extraction Unit for Person Re-Identification -- Robust image corner detection based on maximum point–to–chord distance -- Fabric Defect Detection based on Sparse Representation Image Decomposition -- Salient Superpixel Visual Tracking with Coarse-to-Fine Segmentation and Manifold Ranking -- A Regenerated Feature Extraction Method for Cross-modal Image Registration -- Bottom-up Saliency Prediction by Simulating End-stopping with Log-Gabor -- Learning Collaborative Sparse Correlation Filter for Real-time Multispectral Object Tracking -- SaliencyDetection via Multi-view Synchronized Manifold Ranking -- Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update -- Saliency Detection via Bidirectional Absorbing Markov Chain -- Pedestrian Detection Based on HOG,LBP Features and Visual Saliency -- Data Analysis and Natural Language Processing -- Hadoop Massive Small File Merging Technology Based on Visiting Hot-spot and Associated File Optimization -- A Reversible Data Hiding Scheme Using Compressive Sensing and Random Embedding -- An Abnormal Behavior Clustering Algorithm Based on K-means -- Manifold-regularized Adaptive Lasso -- SentiALG: Automated Corpus Annotation for Algerian Sentiment Analysis -- Self-Validated Story Segmentation of Chinese Broadcast News -- Improved Big Data Analytics Solution Using Deep Learning Model and Real-Time Sentiment Data Analysis Approach -- A Semi-Supervised Corpus Annotation for Saudi Sentiment Analysis using Twitter -- Exploiting Deep Learning for Persian Sentiment Analysis -- Big DataAnalytics and Mining for Crime Data Analysis, Visualization and Prediction -- Comparison of Sentiment analysis approaches using modern Arabic and Sudanese Dialect -- An Intelligent Question Answering System for University Courses Based on BiLSTM and Keywords Similarity -- A Method for Calculating Patent Similarity Using Patent Model Tree Based on Neural Network -- An Optimal Solution of Storing and Processing Small Image Files on Hadoop -- A Big Data Analytics Platform for Information Sharing in the Connection between Administrative Law and Criminal Justice -- Applications -- RST I Invariant W Watermarking S Scheme Using Genetic Algorithm and DWT-SVD -- Application of VPN Based on L2TP and User's Access Rights in Campus Network -- Improved reversible data hiding in JPEG images based on interval correlation -- Representing RCPBAC(Role-Involved Conditional Purpose-based Access Control) in Ontology and SWRL -- Real-time Image Deformation Using Locally-weighted Moving Least Squares -- Machine-learning-based Malware Detection for Virtual Machine by Analyzing Opcode Sequence -- A Trusted Connection Authentication Reinforced By Bayes Algorithm -- A Proactive Caching Strategy Based on Deep Learning in EPC of 5G -- Dynamic Hybrid Approaching for Robust Hand-Eye Calibration -- Statistical Analysis Driven Optimized Deep Learning System for Intrusion Detection -- Comparing Event Related Arousal-Valence and Focus among Different Viewing Perspectives in VR gaming -- A Novel Loop Subdivision for Continuity Surface -- Making Industrial Robots Smarter with Adaptive Reasoning and Autonomous Thinking for Real-Time Tasks in Dynamic Environments: A Case Study -- Shading Structure-Guided Depth Image Restoration -- Machine Learning for Muon Imaging -- Night View Road Scene Enhancement based on Mixed Multi-Scale Retinex and Fractional differentiation -- Traffic Image defogging based on Bit-plane Decomposition -- The Simulation of Non-Gaussian Scattering on Rough Sea Surface -- Distributed Multi-node of Fuzzy Control Considering Adjacent Node Effect for Temperature Control -- An Improved Tentative Q learning Algorithm for Robot Learning. . Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 9th International Conference on Advances in Brain Inspired Cognitive Systems, BICS 2018, held in Xi'an, China, in July 2018. The 83 papers presented in this volume were carefully reviewed and selected from 137 submissions. The papers were organized in topical sections named: neural computation; biologically inspired systems; image recognition: detection, tracking and classification; data analysis and natural language processing; and applications. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]
TÃtulo : Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part I / Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 740 p. 10 ilustraciones ISBN/ISSN/DL: 978-3-030-69525-5 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Redes de comunicación informática Reconocimiento de patrones automatizado Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: 3D Computer Vision -- Weakly-supervised Reconstruction of 3D Objects with Large Shape Variation from Single In-the-Wild Images -- HPGCNN: Hierarchical Parallel Group Convolutional Neural Networks for Point Clouds Processing -- 3D Object Detection and Pose Estimation of Unseen Objects in Color Images with Local Surface Embeddings -- Reconstructing Creative Lego Models, George Tattersall -- Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People -- Learning Global Pose Features in Graph Convolutional Networks for 3D Human Pose Estimation -- SGNet: Semantics Guided Deep Stereo Matching -- Reconstructing Human Body Mesh from Point Clouds by Adversarial GP Network -- SDP-Net: Scene Flow Based Real-time Object Detection and Prediction from Sequential 3D Point Clouds -- SAUM: Symmetry-Aware Upsampling Module for Consistent Point Cloud Completion -- Faster Self-adaptive Deep Stereo -- AFN: Attentional Feedback Network based 3D Terrain Super-Resolution -- Bi-Directional Attention for Joint Instance and Semantic Segmentation in Point Clouds -- Anatomy and Geometry Constrained One-Stage Framework for 3D Human Pose Estimation -- DeepVoxels++: Enhancing the Fidelity of Novel View Synthesis from 3D Voxel Embeddings -- Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media -- Homography-based Egomotion Estimation Using Gravity and SIFT Features -- Mapping of Sparse 3D Data using Alternating Projection -- Best Buddies Registration for Point Clouds -- Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data -- Dynamic Depth Fusion and Transformation for Monocular 3D Object Detection -- Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices -- FKAConv: Feature-Kernel Alignment for Point Cloud Convolution -- Sparse Convolutions on Continuous Domains for Point Cloud and Event Stream Networks -- IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image -- Attended-Auxiliary Supervision Representation for Face Anti-spoofing -- 3D Object Detection from Consecutive Monocular Images -- Data-Efficient Ranking Distillation for Image Retrieval -- Quantum Robust Fitting -- HDD-Net: Hybrid Detector Descriptor with Mutual Interactive Learning -- Segmentation and Grouping -- RGB-D Co-attention Network for Semantic Segmentation -- Semantics through Time: Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation -- Dense Dual-Path Network for Real-time Semantic Segmentation -- Learning More Accurate Features for Semantic Segmentation in CycleNet -- 3D Guided Weakly Supervised Semantic Segmentation -- Real-Time Segmentation Networks should be Latency Aware -- Mask-Ranking Network for Semi-Supervised Video Object Segmentation -- SDCNet: Size Divide and Conquer Network for Salient Object Detection -- Bidirectional Pyramid Networks for Semantic Segmentation -- DEAL: Difficulty-aware Active Learning for Semantic Segmentation -- EPSNet: Efficient Panoptic Segmentation Network with Cross-layer Attention Fusion -- Local Context Attention for Salient Object Segmentation -- Generic Image Segmentation in Fully Convolutional Networks by Superpixel Merging Map. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part I / [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 740 p. 10 ilustraciones.
ISBN : 978-3-030-69525-5
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Redes de comunicación informática Reconocimiento de patrones automatizado Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: 3D Computer Vision -- Weakly-supervised Reconstruction of 3D Objects with Large Shape Variation from Single In-the-Wild Images -- HPGCNN: Hierarchical Parallel Group Convolutional Neural Networks for Point Clouds Processing -- 3D Object Detection and Pose Estimation of Unseen Objects in Color Images with Local Surface Embeddings -- Reconstructing Creative Lego Models, George Tattersall -- Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People -- Learning Global Pose Features in Graph Convolutional Networks for 3D Human Pose Estimation -- SGNet: Semantics Guided Deep Stereo Matching -- Reconstructing Human Body Mesh from Point Clouds by Adversarial GP Network -- SDP-Net: Scene Flow Based Real-time Object Detection and Prediction from Sequential 3D Point Clouds -- SAUM: Symmetry-Aware Upsampling Module for Consistent Point Cloud Completion -- Faster Self-adaptive Deep Stereo -- AFN: Attentional Feedback Network based 3D Terrain Super-Resolution -- Bi-Directional Attention for Joint Instance and Semantic Segmentation in Point Clouds -- Anatomy and Geometry Constrained One-Stage Framework for 3D Human Pose Estimation -- DeepVoxels++: Enhancing the Fidelity of Novel View Synthesis from 3D Voxel Embeddings -- Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media -- Homography-based Egomotion Estimation Using Gravity and SIFT Features -- Mapping of Sparse 3D Data using Alternating Projection -- Best Buddies Registration for Point Clouds -- Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data -- Dynamic Depth Fusion and Transformation for Monocular 3D Object Detection -- Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices -- FKAConv: Feature-Kernel Alignment for Point Cloud Convolution -- Sparse Convolutions on Continuous Domains for Point Cloud and Event Stream Networks -- IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image -- Attended-Auxiliary Supervision Representation for Face Anti-spoofing -- 3D Object Detection from Consecutive Monocular Images -- Data-Efficient Ranking Distillation for Image Retrieval -- Quantum Robust Fitting -- HDD-Net: Hybrid Detector Descriptor with Mutual Interactive Learning -- Segmentation and Grouping -- RGB-D Co-attention Network for Semantic Segmentation -- Semantics through Time: Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation -- Dense Dual-Path Network for Real-time Semantic Segmentation -- Learning More Accurate Features for Semantic Segmentation in CycleNet -- 3D Guided Weakly Supervised Semantic Segmentation -- Real-Time Segmentation Networks should be Latency Aware -- Mask-Ranking Network for Semi-Supervised Video Object Segmentation -- SDCNet: Size Divide and Conquer Network for Salient Object Detection -- Bidirectional Pyramid Networks for Semantic Segmentation -- DEAL: Difficulty-aware Active Learning for Semantic Segmentation -- EPSNet: Efficient Panoptic Segmentation Network with Cross-layer Attention Fusion -- Local Context Attention for Salient Object Segmentation -- Generic Image Segmentation in Fully Convolutional Networks by Superpixel Merging Map. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]
TÃtulo : Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part II / Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 718 p. 260 ilustraciones ISBN/ISSN/DL: 978-3-030-69532-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador Inteligencia artificial Sistemas de reconocimiento de patrones IngenierÃa Informática Red de computadoras Reconocimiento de patrones automatizado IngenierÃa Informática y Redes Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Low-Level Vision, Image Processing -- Image Inpainting with Onion Convolutions -- Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention Network -- Second-order Camera-aware Color Transformation for Cross-domain Person Re-identification -- CS-MCNet:A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensation -- MCGKT-Net: Multi-level Context Gating Knowledge Transfer Network for Single Image Deraining -- Degradation Model Learning for Real-World Single Image Super-resolution -- Chromatic Aberration Correction Using Cross-Channel Prior in Shearlet Domain -- Raw-Guided Enhancing Reprocess of Low-Light Image via Deep Exposure Adjustment -- Robust High Dynamic Range (HDR) Imaging with Complex Motion and Parallax -- Low-light Color Imaging via Dual Camera Acquisition -- Frequency Attention Network: Blind Noise Removal for Real Images -- Restoring Spatially-Heterogeneous Distortions using Mixture of Experts Network -- Color Enhancement usingGlobal Parameters and Local Features Learning -- An Efficient Group Feature Fusion Residual Network for Image Super-Resolution -- Adversarial Image Composition with Auxiliary Illumination -- Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Network -- Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning -- Multi-scale Attentive Residual Dense Network for Single Image Rain Removal -- FAN: Feature Adaptation Network for Surveillance Face Recognition and Normalization -- Human Motion Deblurring using Localized Body Prior -- Synergistic Saliency and Depth Prediction for RGB-D Saliency Detection -- Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array -- Deep Priors inside an Unrolled and Adaptive Deconvolution Model -- Motion and Tracking -- Adaptive Spatio-Temporal Regularized Correlation Filters for UAV-based Tracking -- Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Estimation -- Self-supervised Sparse toDense Motion Segmentation -- Recursive Bayesian Filtering for Multiple Human Pose Tracking from Multiple Cameras -- Adversarial Refinement Network for Human Motion Prediction -- Semantic Synthesis of Pedestrian Locomotion -- Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation -- Visual Tracking by TridentAlign and Context Embedding -- Leveraging Tacit Information Embedded in CNN Layers for Visual Tracking -- A Two-Stage Minimum Cost Multicut Approach to Self-Supervised Multiple Person Tracking -- Learning Local Feature Descriptors for Multiple Object Tracking -- VAN: Versatile Affinity Network for End-to-end Online Multi-Object Tracking -- COMET: Context-Aware IoU-Guided Network for Small Object Tracking -- Adversarial Semi-Supervised Multi-Domain Tracking -- Tracking-by-Trackers with a Distilled and Reinforced Model -- Motion Prediction Using Temporal Inception Module -- A Sparse Gaussian Approach to Region-Based 6DoF Object Tracking -- Modeling Cross-Modal interaction in a Multi-detector, Multi-modal Tracking Framework -- Dense Pixel-wise Micro-motion Estimation of Object Surface by using Low Dimensional Embedding of Laser Speckle Pattern. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part II / [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 718 p. 260 ilustraciones.
ISBN : 978-3-030-69532-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador Inteligencia artificial Sistemas de reconocimiento de patrones IngenierÃa Informática Red de computadoras Reconocimiento de patrones automatizado IngenierÃa Informática y Redes Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Low-Level Vision, Image Processing -- Image Inpainting with Onion Convolutions -- Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention Network -- Second-order Camera-aware Color Transformation for Cross-domain Person Re-identification -- CS-MCNet:A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensation -- MCGKT-Net: Multi-level Context Gating Knowledge Transfer Network for Single Image Deraining -- Degradation Model Learning for Real-World Single Image Super-resolution -- Chromatic Aberration Correction Using Cross-Channel Prior in Shearlet Domain -- Raw-Guided Enhancing Reprocess of Low-Light Image via Deep Exposure Adjustment -- Robust High Dynamic Range (HDR) Imaging with Complex Motion and Parallax -- Low-light Color Imaging via Dual Camera Acquisition -- Frequency Attention Network: Blind Noise Removal for Real Images -- Restoring Spatially-Heterogeneous Distortions using Mixture of Experts Network -- Color Enhancement usingGlobal Parameters and Local Features Learning -- An Efficient Group Feature Fusion Residual Network for Image Super-Resolution -- Adversarial Image Composition with Auxiliary Illumination -- Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Network -- Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning -- Multi-scale Attentive Residual Dense Network for Single Image Rain Removal -- FAN: Feature Adaptation Network for Surveillance Face Recognition and Normalization -- Human Motion Deblurring using Localized Body Prior -- Synergistic Saliency and Depth Prediction for RGB-D Saliency Detection -- Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array -- Deep Priors inside an Unrolled and Adaptive Deconvolution Model -- Motion and Tracking -- Adaptive Spatio-Temporal Regularized Correlation Filters for UAV-based Tracking -- Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Estimation -- Self-supervised Sparse toDense Motion Segmentation -- Recursive Bayesian Filtering for Multiple Human Pose Tracking from Multiple Cameras -- Adversarial Refinement Network for Human Motion Prediction -- Semantic Synthesis of Pedestrian Locomotion -- Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation -- Visual Tracking by TridentAlign and Context Embedding -- Leveraging Tacit Information Embedded in CNN Layers for Visual Tracking -- A Two-Stage Minimum Cost Multicut Approach to Self-Supervised Multiple Person Tracking -- Learning Local Feature Descriptors for Multiple Object Tracking -- VAN: Versatile Affinity Network for End-to-end Online Multi-Object Tracking -- COMET: Context-Aware IoU-Guided Network for Small Object Tracking -- Adversarial Semi-Supervised Multi-Domain Tracking -- Tracking-by-Trackers with a Distilled and Reinforced Model -- Motion Prediction Using Temporal Inception Module -- A Sparse Gaussian Approach to Region-Based 6DoF Object Tracking -- Modeling Cross-Modal interaction in a Multi-detector, Multi-modal Tracking Framework -- Dense Pixel-wise Micro-motion Estimation of Object Surface by using Low Dimensional Embedding of Laser Speckle Pattern. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]
TÃtulo : Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part III / Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 757 p. 245 ilustraciones, 229 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-69535-4 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Recognition and Detection -- End-to-end Model-based Gait Recognition -- Horizontal Flipping Assisted Disentangled Feature Learning for Semi-Supervised Person Re-Identification -- MIX'EM: Unsupervised Image Classification using a Mixture of Embeddings -- Backbone Based Feature Enhancement for Object Detection -- Long-Term Cloth-Changing Person Re-identification -- Any-Shot Object Detection -- Background Learnable Cascade for Zero-Shot Object Detection -- Unsupervised Domain Adaptive Object Detection using Forward-Backward Cyclic Adaptation -- COG: COnsistent data auGmentation for object perception -- Synthesizing the Unseen for Zero-shot Object Detection -- Fully Supervised and Guided Distillation for One-Stage Detectors -- Visualizing Color-wise Saliency of Black-Box Image Classification Models -- ERIC: Extracting Relations Inferred from Convolutions -- D2D: Keypoint Extraction with Describe to Detect Approach -- Accurate Arbitrary-Shaped Scene Text Detection via Iterative Polynomial ParameterRegression -- Adaptive Spotting: Deep Reinforcement Object Search in 3D Point Clouds -- Efficient Large-Scale Semantic Visual Localization in 2D Maps -- Synthetic-to-Real Unsupervised Domain Adaptation for Scene Text Detection in the Wild -- Scale-Aware Polar Representation for Arbitrarily-Shaped Text Detection -- Branch Interaction Network for Person Re-identification -- BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images -- Jointly Discriminating and Frequent Visual Representation Mining -- Discrete Spatial Importance-Based Deep Weighted Hashing -- Low-level Sensor Fusion Network for 3D Vehicle Detection using Radar Range-Azimuth Heatmap and Monocular Image -- MLIFeat: Multi-level information fusion based deep local features -- CLASS: Cross-Level Attention and Supervision for Salient Objects Detection -- Cascaded Transposed Long-range Convolutions for Monocular Depth Estimation -- Optimization, Statistical Methods, and Learning -- Bridging Adversarial and Statistical Domain Transfer via Spectral Adaptation Networks -- Large-Scale Cross-Domain Few-Shot Learning -- Channel Pruning for Accelerating Convolutional Neural Networks via Wasserstein Metric -- Progressive Batching for Efficient Non-linear Least Squares -- Fast and Differentiable Message Passing on Pairwise Markov Random Fields -- A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates -- Graph-based Heuristic Search for Module Selection Procedure in Neural Module Network -- Towards Fast and Robust Adversarial Training for Image Classification -- Few-Shot Zero-Shot Learning: Knowledge Transfer with Less Supervision -- Lossless Image Compression Using a Multi-Scale Progressive Statistical Model -- Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue -- Robot Vision -- Point Proposal based Instance Segmentation with Rectangular Masks for Robot Picking Task -- Multi-task Learning with Future States for Vision-based Autonomous Driving -- MTNAS: Search Multi-Task Networks for Autonomous Driving -- Compact and Fast Underwater Segmentation Network for Autonomous Underwater Vehicles -- L2R GAN: LiDAR-to-Radar Translation -- V2A - Vision to Action: Learning robotic arm actions based on vision and language -- To Filter Prune, or to Layer Prune, That Is The Question. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part III / [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 757 p. 245 ilustraciones, 229 ilustraciones en color.
ISBN : 978-3-030-69535-4
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Recognition and Detection -- End-to-end Model-based Gait Recognition -- Horizontal Flipping Assisted Disentangled Feature Learning for Semi-Supervised Person Re-Identification -- MIX'EM: Unsupervised Image Classification using a Mixture of Embeddings -- Backbone Based Feature Enhancement for Object Detection -- Long-Term Cloth-Changing Person Re-identification -- Any-Shot Object Detection -- Background Learnable Cascade for Zero-Shot Object Detection -- Unsupervised Domain Adaptive Object Detection using Forward-Backward Cyclic Adaptation -- COG: COnsistent data auGmentation for object perception -- Synthesizing the Unseen for Zero-shot Object Detection -- Fully Supervised and Guided Distillation for One-Stage Detectors -- Visualizing Color-wise Saliency of Black-Box Image Classification Models -- ERIC: Extracting Relations Inferred from Convolutions -- D2D: Keypoint Extraction with Describe to Detect Approach -- Accurate Arbitrary-Shaped Scene Text Detection via Iterative Polynomial ParameterRegression -- Adaptive Spotting: Deep Reinforcement Object Search in 3D Point Clouds -- Efficient Large-Scale Semantic Visual Localization in 2D Maps -- Synthetic-to-Real Unsupervised Domain Adaptation for Scene Text Detection in the Wild -- Scale-Aware Polar Representation for Arbitrarily-Shaped Text Detection -- Branch Interaction Network for Person Re-identification -- BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images -- Jointly Discriminating and Frequent Visual Representation Mining -- Discrete Spatial Importance-Based Deep Weighted Hashing -- Low-level Sensor Fusion Network for 3D Vehicle Detection using Radar Range-Azimuth Heatmap and Monocular Image -- MLIFeat: Multi-level information fusion based deep local features -- CLASS: Cross-Level Attention and Supervision for Salient Objects Detection -- Cascaded Transposed Long-range Convolutions for Monocular Depth Estimation -- Optimization, Statistical Methods, and Learning -- Bridging Adversarial and Statistical Domain Transfer via Spectral Adaptation Networks -- Large-Scale Cross-Domain Few-Shot Learning -- Channel Pruning for Accelerating Convolutional Neural Networks via Wasserstein Metric -- Progressive Batching for Efficient Non-linear Least Squares -- Fast and Differentiable Message Passing on Pairwise Markov Random Fields -- A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates -- Graph-based Heuristic Search for Module Selection Procedure in Neural Module Network -- Towards Fast and Robust Adversarial Training for Image Classification -- Few-Shot Zero-Shot Learning: Knowledge Transfer with Less Supervision -- Lossless Image Compression Using a Multi-Scale Progressive Statistical Model -- Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue -- Robot Vision -- Point Proposal based Instance Segmentation with Rectangular Masks for Robot Picking Task -- Multi-task Learning with Future States for Vision-based Autonomous Driving -- MTNAS: Search Multi-Task Networks for Autonomous Driving -- Compact and Fast Underwater Segmentation Network for Autonomous Underwater Vehicles -- L2R GAN: LiDAR-to-Radar Translation -- V2A - Vision to Action: Learning robotic arm actions based on vision and language -- To Filter Prune, or to Layer Prune, That Is The Question. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]
TÃtulo : Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part IV / Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 715 p. 284 ilustraciones, 278 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-69538-5 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones Software de la aplicacion IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Aplicaciones informáticas y de sistemas de información Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Deep Learning for Computer Vision -- In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization -- Exploiting Transferable Knowledge for Fairness-aware Image Classification -- Introspective Learning by Distilling Knowledge from Online Self-explanation -- Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity -- Meta-Learning with Context-Agnostic Initialisations -- Second Order enhanced Multi-glimpse Attention in Visual Question Answering -- Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection -- Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes -- Part-aware Attention Network for Person Re-Identification -- Image Captioning through Image Transformer -- Feature Variance Ratio-Guided Channel Pruning for Deep Convolutional Network Acceleration -- Learn more, forget less: Cues from human brain -- Knowledge Transfer Graph for Deep Collaborative Learning -- Regularizing Meta-Learning via Gradient Dropout -- Vax-a-Net: Training-time Defence Against Adversarial Patch Attacks -- Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed -- Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation -- Double Targeted Universal Adversarial Perturbations -- Adversarially Robust Deep Image Super-Resolution using Entropy Regularization -- Online Knowledge Distillation via Multi-branch Diversity Enhancement -- Rotation Equivariant Orientation Estimation for Omnidirectional Localization -- Contextual Semantic Interpretability -- Few-Shot Object Detection by Second-order Pooling -- Depth-Adapted CNN for RGB-D cameras -- Generative Models for Computer Vision -- Over-exposure Correction via Exposure and Scene Information Disentanglement -- Novel-View Human Action Synthesis -- Augmentation Network for Generalised Zero-Shot Learning -- Local Facial Makeup Transfer via Disentangled Representation -- OpenGAN: Open Set Generative Adversarial Networks -- CPTNet: Cascade Pose Transform Network for Single Image Talking Head Animation -- TinyGAN: Distilling BigGAN for Conditional Image Generation -- A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings -- RF-GAN: A Light and Reconfigurable Network for Unpaired Image-to-Image Translation -- GAN-based Noise Model for Denoising Real Images -- Emotional Landscape Image Generation Using Generative Adversarial Networks -- Feedback Recurrent Autoencoder for Video Compression -- MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative Adversarial Network -- DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution -- dpVAEs: Fixing Sample Generation for Regularized VAEs -- MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network -- EvolGAN: Evolutionary Generative Adversarial Networks -- Sequential View Synthesis with Transformer. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Computer Vision – ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part IV / [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 715 p. 284 ilustraciones, 278 ilustraciones en color.
ISBN : 978-3-030-69538-5
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones Software de la aplicacion IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Aplicaciones informáticas y de sistemas de información Clasificación: 006.37 Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Deep Learning for Computer Vision -- In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization -- Exploiting Transferable Knowledge for Fairness-aware Image Classification -- Introspective Learning by Distilling Knowledge from Online Self-explanation -- Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity -- Meta-Learning with Context-Agnostic Initialisations -- Second Order enhanced Multi-glimpse Attention in Visual Question Answering -- Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection -- Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes -- Part-aware Attention Network for Person Re-Identification -- Image Captioning through Image Transformer -- Feature Variance Ratio-Guided Channel Pruning for Deep Convolutional Network Acceleration -- Learn more, forget less: Cues from human brain -- Knowledge Transfer Graph for Deep Collaborative Learning -- Regularizing Meta-Learning via Gradient Dropout -- Vax-a-Net: Training-time Defence Against Adversarial Patch Attacks -- Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed -- Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation -- Double Targeted Universal Adversarial Perturbations -- Adversarially Robust Deep Image Super-Resolution using Entropy Regularization -- Online Knowledge Distillation via Multi-branch Diversity Enhancement -- Rotation Equivariant Orientation Estimation for Omnidirectional Localization -- Contextual Semantic Interpretability -- Few-Shot Object Detection by Second-order Pooling -- Depth-Adapted CNN for RGB-D cameras -- Generative Models for Computer Vision -- Over-exposure Correction via Exposure and Scene Information Disentanglement -- Novel-View Human Action Synthesis -- Augmentation Network for Generalised Zero-Shot Learning -- Local Facial Makeup Transfer via Disentangled Representation -- OpenGAN: Open Set Generative Adversarial Networks -- CPTNet: Cascade Pose Transform Network for Single Image Talking Head Animation -- TinyGAN: Distilling BigGAN for Conditional Image Generation -- A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings -- RF-GAN: A Light and Reconfigurable Network for Unpaired Image-to-Image Translation -- GAN-based Noise Model for Denoising Real Images -- Emotional Landscape Image Generation Using Generative Adversarial Networks -- Feedback Recurrent Autoencoder for Video Compression -- MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative Adversarial Network -- DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution -- dpVAEs: Fixing Sample Generation for Regularized VAEs -- MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network -- EvolGAN: Evolutionary Generative Adversarial Networks -- Sequential View Synthesis with Transformer. Tipo de medio : Computadora Summary : The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] PermalinkPermalinkPermalinkGraph-Based Representations in Pattern Recognition / Foggia, Pasquale ; Liu, Cheng-Lin ; Vento, Mario
PermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
PermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
PermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
PermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
PermalinkQuantitative Analysis and Optimal Control of Energy Efficiency in Discrete Manufacturing System / Wang, Yan
Permalink