Información del autor
Autor Liu, Cheng-Lin |
Documentos disponibles escritos por este autor (14)



11th IAPR-TC-15 International Workshop, GbRPR 2017, Anacapri, Italy, May 16–18, 2017, Proceedings / Foggia, Pasquale ; Liu, Cheng-Lin ; Vento, Mario
![]()
TÃtulo : 11th IAPR-TC-15 International Workshop, GbRPR 2017, Anacapri, Italy, May 16–18, 2017, Proceedings Tipo de documento: documento electrónico Autores: Foggia, Pasquale, ; Liu, Cheng-Lin, ; Vento, Mario, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2017 Número de páginas: XV, 289 p. 100 ilustraciones, 60 ilustraciones en color. ISBN/ISSN/DL: 978-3-319-58961-9 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Sistemas de reconocimiento de patrones Visión por computador Gráficos de computadora Informática Matemáticas discretas Inteligencia artificial Algoritmos Reconocimiento de patrones automatizado Matemáticas discretas en informática Ciencia de los datos Clasificación: Resumen: Este libro constituye las actas arbitradas del 11.º Taller internacional IAPR-TC-15 sobre representación basada en gráficos en reconocimiento de patrones, GbRPR 2017, celebrado en Anacapri, Italia, en mayo de 2017. Los 25 artÃculos completos y 2 resúmenes de artÃculos invitados presentados en Este volumen fue cuidadosamente revisado y seleccionado entre 31 presentaciones. Los artÃculos analizan los resultados de la investigación y sus aplicaciones en la intersección del reconocimiento de patrones, el análisis de imágenes, la teorÃa de grafos y también la aplicación de gráficos a problemas de reconocimiento de patrones en otros campos como la topologÃa computacional, los sistemas de reconocimiento gráfico y la bioinformática. Nota de contenido: Image and shape analysis -- Learning and graph kernels -- Graph applications -- Graph matching -- Large graphs and social networks -- Minging and clustering -- Graph edit distance -- Graphs and information theory. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 11th IAPR-TC-15 International Workshop, GbRPR 2017, Anacapri, Italy, May 16–18, 2017, Proceedings [documento electrónico] / Foggia, Pasquale, ; Liu, Cheng-Lin, ; Vento, Mario, . - 1 ed. . - [s.l.] : Springer, 2017 . - XV, 289 p. 100 ilustraciones, 60 ilustraciones en color.
ISBN : 978-3-319-58961-9
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Sistemas de reconocimiento de patrones Visión por computador Gráficos de computadora Informática Matemáticas discretas Inteligencia artificial Algoritmos Reconocimiento de patrones automatizado Matemáticas discretas en informática Ciencia de los datos Clasificación: Resumen: Este libro constituye las actas arbitradas del 11.º Taller internacional IAPR-TC-15 sobre representación basada en gráficos en reconocimiento de patrones, GbRPR 2017, celebrado en Anacapri, Italia, en mayo de 2017. Los 25 artÃculos completos y 2 resúmenes de artÃculos invitados presentados en Este volumen fue cuidadosamente revisado y seleccionado entre 31 presentaciones. Los artÃculos analizan los resultados de la investigación y sus aplicaciones en la intersección del reconocimiento de patrones, el análisis de imágenes, la teorÃa de grafos y también la aplicación de gráficos a problemas de reconocimiento de patrones en otros campos como la topologÃa computacional, los sistemas de reconocimiento gráfico y la bioinformática. Nota de contenido: Image and shape analysis -- Learning and graph kernels -- Graph applications -- Graph matching -- Large graphs and social networks -- Minging and clustering -- Graph edit distance -- Graphs and information theory. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part I / Ishikawa, Hiroshi ; Liu, Cheng-Lin ; Pajdla, Tomas ; Shi, Jianbo
![]()
TÃtulo : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part I Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 740 p. 10 ilustraciones ISBN/ISSN/DL: 978-3-030-69525-5 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Redes de comunicación informática Reconocimiento de patrones automatizado Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: 3D Computer Vision -- Weakly-supervised Reconstruction of 3D Objects with Large Shape Variation from Single In-the-Wild Images -- HPGCNN: Hierarchical Parallel Group Convolutional Neural Networks for Point Clouds Processing -- 3D Object Detection and Pose Estimation of Unseen Objects in Color Images with Local Surface Embeddings -- Reconstructing Creative Lego Models, George Tattersall -- Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People -- Learning Global Pose Features in Graph Convolutional Networks for 3D Human Pose Estimation -- SGNet: Semantics Guided Deep Stereo Matching -- Reconstructing Human Body Mesh from Point Clouds by Adversarial GP Network -- SDP-Net: Scene Flow Based Real-time Object Detection and Prediction from Sequential 3D Point Clouds -- SAUM: Symmetry-Aware Upsampling Module for Consistent Point Cloud Completion -- Faster Self-adaptive Deep Stereo -- AFN: Attentional Feedback Network based 3D Terrain Super-Resolution -- Bi-Directional Attention for Joint Instance and Semantic Segmentation in Point Clouds -- Anatomy and Geometry Constrained One-Stage Framework for 3D Human Pose Estimation -- DeepVoxels++: Enhancing the Fidelity of Novel View Synthesis from 3D Voxel Embeddings -- Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media -- Homography-based Egomotion Estimation Using Gravity and SIFT Features -- Mapping of Sparse 3D Data using Alternating Projection -- Best Buddies Registration for Point Clouds -- Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data -- Dynamic Depth Fusion and Transformation for Monocular 3D Object Detection -- Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices -- FKAConv: Feature-Kernel Alignment for Point Cloud Convolution -- Sparse Convolutions on Continuous Domains for Point Cloud and Event Stream Networks -- IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image -- Attended-Auxiliary Supervision Representation for Face Anti-spoofing -- 3D Object Detection from Consecutive Monocular Images -- Data-Efficient Ranking Distillation for Image Retrieval -- Quantum Robust Fitting -- HDD-Net: Hybrid Detector Descriptor with Mutual Interactive Learning -- Segmentation and Grouping -- RGB-D Co-attention Network for Semantic Segmentation -- Semantics through Time: Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation -- Dense Dual-Path Network for Real-time Semantic Segmentation -- Learning More Accurate Features for Semantic Segmentation in CycleNet -- 3D Guided Weakly Supervised Semantic Segmentation -- Real-Time Segmentation Networks should be Latency Aware -- Mask-Ranking Network for Semi-Supervised Video Object Segmentation -- SDCNet: Size Divide and Conquer Network for Salient Object Detection -- Bidirectional Pyramid Networks for Semantic Segmentation -- DEAL: Difficulty-aware Active Learning for Semantic Segmentation -- EPSNet: Efficient Panoptic Segmentation Network with Cross-layer Attention Fusion -- Local Context Attention for Salient Object Segmentation -- Generic Image Segmentation in Fully Convolutional Networks by Superpixel Merging Map. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part I [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 740 p. 10 ilustraciones.
ISBN : 978-3-030-69525-5
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Redes de comunicación informática Reconocimiento de patrones automatizado Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: 3D Computer Vision -- Weakly-supervised Reconstruction of 3D Objects with Large Shape Variation from Single In-the-Wild Images -- HPGCNN: Hierarchical Parallel Group Convolutional Neural Networks for Point Clouds Processing -- 3D Object Detection and Pose Estimation of Unseen Objects in Color Images with Local Surface Embeddings -- Reconstructing Creative Lego Models, George Tattersall -- Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People -- Learning Global Pose Features in Graph Convolutional Networks for 3D Human Pose Estimation -- SGNet: Semantics Guided Deep Stereo Matching -- Reconstructing Human Body Mesh from Point Clouds by Adversarial GP Network -- SDP-Net: Scene Flow Based Real-time Object Detection and Prediction from Sequential 3D Point Clouds -- SAUM: Symmetry-Aware Upsampling Module for Consistent Point Cloud Completion -- Faster Self-adaptive Deep Stereo -- AFN: Attentional Feedback Network based 3D Terrain Super-Resolution -- Bi-Directional Attention for Joint Instance and Semantic Segmentation in Point Clouds -- Anatomy and Geometry Constrained One-Stage Framework for 3D Human Pose Estimation -- DeepVoxels++: Enhancing the Fidelity of Novel View Synthesis from 3D Voxel Embeddings -- Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media -- Homography-based Egomotion Estimation Using Gravity and SIFT Features -- Mapping of Sparse 3D Data using Alternating Projection -- Best Buddies Registration for Point Clouds -- Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data -- Dynamic Depth Fusion and Transformation for Monocular 3D Object Detection -- Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices -- FKAConv: Feature-Kernel Alignment for Point Cloud Convolution -- Sparse Convolutions on Continuous Domains for Point Cloud and Event Stream Networks -- IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image -- Attended-Auxiliary Supervision Representation for Face Anti-spoofing -- 3D Object Detection from Consecutive Monocular Images -- Data-Efficient Ranking Distillation for Image Retrieval -- Quantum Robust Fitting -- HDD-Net: Hybrid Detector Descriptor with Mutual Interactive Learning -- Segmentation and Grouping -- RGB-D Co-attention Network for Semantic Segmentation -- Semantics through Time: Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation -- Dense Dual-Path Network for Real-time Semantic Segmentation -- Learning More Accurate Features for Semantic Segmentation in CycleNet -- 3D Guided Weakly Supervised Semantic Segmentation -- Real-Time Segmentation Networks should be Latency Aware -- Mask-Ranking Network for Semi-Supervised Video Object Segmentation -- SDCNet: Size Divide and Conquer Network for Salient Object Detection -- Bidirectional Pyramid Networks for Semantic Segmentation -- DEAL: Difficulty-aware Active Learning for Semantic Segmentation -- EPSNet: Efficient Panoptic Segmentation Network with Cross-layer Attention Fusion -- Local Context Attention for Salient Object Segmentation -- Generic Image Segmentation in Fully Convolutional Networks by Superpixel Merging Map. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part II / Ishikawa, Hiroshi ; Liu, Cheng-Lin ; Pajdla, Tomas ; Shi, Jianbo
![]()
TÃtulo : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part II Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 718 p. 260 ilustraciones ISBN/ISSN/DL: 978-3-030-69532-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Inteligencia artificial Sistemas de reconocimiento de patrones IngenierÃa Informática Red de computadoras Reconocimiento de patrones automatizado IngenierÃa Informática y Redes Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Low-Level Vision, Image Processing -- Image Inpainting with Onion Convolutions -- Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention Network -- Second-order Camera-aware Color Transformation for Cross-domain Person Re-identification -- CS-MCNet:A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensation -- MCGKT-Net: Multi-level Context Gating Knowledge Transfer Network for Single Image Deraining -- Degradation Model Learning for Real-World Single Image Super-resolution -- Chromatic Aberration Correction Using Cross-Channel Prior in Shearlet Domain -- Raw-Guided Enhancing Reprocess of Low-Light Image via Deep Exposure Adjustment -- Robust High Dynamic Range (HDR) Imaging with Complex Motion and Parallax -- Low-light Color Imaging via Dual Camera Acquisition -- Frequency Attention Network: Blind Noise Removal for Real Images -- Restoring Spatially-Heterogeneous Distortions using Mixture of Experts Network -- Color Enhancement usingGlobal Parameters and Local Features Learning -- An Efficient Group Feature Fusion Residual Network for Image Super-Resolution -- Adversarial Image Composition with Auxiliary Illumination -- Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Network -- Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning -- Multi-scale Attentive Residual Dense Network for Single Image Rain Removal -- FAN: Feature Adaptation Network for Surveillance Face Recognition and Normalization -- Human Motion Deblurring using Localized Body Prior -- Synergistic Saliency and Depth Prediction for RGB-D Saliency Detection -- Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array -- Deep Priors inside an Unrolled and Adaptive Deconvolution Model -- Motion and Tracking -- Adaptive Spatio-Temporal Regularized Correlation Filters for UAV-based Tracking -- Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Estimation -- Self-supervised Sparse toDense Motion Segmentation -- Recursive Bayesian Filtering for Multiple Human Pose Tracking from Multiple Cameras -- Adversarial Refinement Network for Human Motion Prediction -- Semantic Synthesis of Pedestrian Locomotion -- Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation -- Visual Tracking by TridentAlign and Context Embedding -- Leveraging Tacit Information Embedded in CNN Layers for Visual Tracking -- A Two-Stage Minimum Cost Multicut Approach to Self-Supervised Multiple Person Tracking -- Learning Local Feature Descriptors for Multiple Object Tracking -- VAN: Versatile Affinity Network for End-to-end Online Multi-Object Tracking -- COMET: Context-Aware IoU-Guided Network for Small Object Tracking -- Adversarial Semi-Supervised Multi-Domain Tracking -- Tracking-by-Trackers with a Distilled and Reinforced Model -- Motion Prediction Using Temporal Inception Module -- A Sparse Gaussian Approach to Region-Based 6DoF Object Tracking -- Modeling Cross-Modal interaction in a Multi-detector, Multi-modal Tracking Framework -- Dense Pixel-wise Micro-motion Estimation of Object Surface by using Low Dimensional Embedding of Laser Speckle Pattern. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part II [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 718 p. 260 ilustraciones.
ISBN : 978-3-030-69532-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Inteligencia artificial Sistemas de reconocimiento de patrones IngenierÃa Informática Red de computadoras Reconocimiento de patrones automatizado IngenierÃa Informática y Redes Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Low-Level Vision, Image Processing -- Image Inpainting with Onion Convolutions -- Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention Network -- Second-order Camera-aware Color Transformation for Cross-domain Person Re-identification -- CS-MCNet:A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensation -- MCGKT-Net: Multi-level Context Gating Knowledge Transfer Network for Single Image Deraining -- Degradation Model Learning for Real-World Single Image Super-resolution -- Chromatic Aberration Correction Using Cross-Channel Prior in Shearlet Domain -- Raw-Guided Enhancing Reprocess of Low-Light Image via Deep Exposure Adjustment -- Robust High Dynamic Range (HDR) Imaging with Complex Motion and Parallax -- Low-light Color Imaging via Dual Camera Acquisition -- Frequency Attention Network: Blind Noise Removal for Real Images -- Restoring Spatially-Heterogeneous Distortions using Mixture of Experts Network -- Color Enhancement usingGlobal Parameters and Local Features Learning -- An Efficient Group Feature Fusion Residual Network for Image Super-Resolution -- Adversarial Image Composition with Auxiliary Illumination -- Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Network -- Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning -- Multi-scale Attentive Residual Dense Network for Single Image Rain Removal -- FAN: Feature Adaptation Network for Surveillance Face Recognition and Normalization -- Human Motion Deblurring using Localized Body Prior -- Synergistic Saliency and Depth Prediction for RGB-D Saliency Detection -- Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array -- Deep Priors inside an Unrolled and Adaptive Deconvolution Model -- Motion and Tracking -- Adaptive Spatio-Temporal Regularized Correlation Filters for UAV-based Tracking -- Goal-GAN: Multimodal Trajectory Prediction Based on Goal Position Estimation -- Self-supervised Sparse toDense Motion Segmentation -- Recursive Bayesian Filtering for Multiple Human Pose Tracking from Multiple Cameras -- Adversarial Refinement Network for Human Motion Prediction -- Semantic Synthesis of Pedestrian Locomotion -- Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation -- Visual Tracking by TridentAlign and Context Embedding -- Leveraging Tacit Information Embedded in CNN Layers for Visual Tracking -- A Two-Stage Minimum Cost Multicut Approach to Self-Supervised Multiple Person Tracking -- Learning Local Feature Descriptors for Multiple Object Tracking -- VAN: Versatile Affinity Network for End-to-end Online Multi-Object Tracking -- COMET: Context-Aware IoU-Guided Network for Small Object Tracking -- Adversarial Semi-Supervised Multi-Domain Tracking -- Tracking-by-Trackers with a Distilled and Reinforced Model -- Motion Prediction Using Temporal Inception Module -- A Sparse Gaussian Approach to Region-Based 6DoF Object Tracking -- Modeling Cross-Modal interaction in a Multi-detector, Multi-modal Tracking Framework -- Dense Pixel-wise Micro-motion Estimation of Object Surface by using Low Dimensional Embedding of Laser Speckle Pattern. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part III / Ishikawa, Hiroshi ; Liu, Cheng-Lin ; Pajdla, Tomas ; Shi, Jianbo
![]()
TÃtulo : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part III Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 757 p. 245 ilustraciones, 229 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-69535-4 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Recognition and Detection -- End-to-end Model-based Gait Recognition -- Horizontal Flipping Assisted Disentangled Feature Learning for Semi-Supervised Person Re-Identification -- MIX'EM: Unsupervised Image Classification using a Mixture of Embeddings -- Backbone Based Feature Enhancement for Object Detection -- Long-Term Cloth-Changing Person Re-identification -- Any-Shot Object Detection -- Background Learnable Cascade for Zero-Shot Object Detection -- Unsupervised Domain Adaptive Object Detection using Forward-Backward Cyclic Adaptation -- COG: COnsistent data auGmentation for object perception -- Synthesizing the Unseen for Zero-shot Object Detection -- Fully Supervised and Guided Distillation for One-Stage Detectors -- Visualizing Color-wise Saliency of Black-Box Image Classification Models -- ERIC: Extracting Relations Inferred from Convolutions -- D2D: Keypoint Extraction with Describe to Detect Approach -- Accurate Arbitrary-Shaped Scene Text Detection via Iterative Polynomial ParameterRegression -- Adaptive Spotting: Deep Reinforcement Object Search in 3D Point Clouds -- Efficient Large-Scale Semantic Visual Localization in 2D Maps -- Synthetic-to-Real Unsupervised Domain Adaptation for Scene Text Detection in the Wild -- Scale-Aware Polar Representation for Arbitrarily-Shaped Text Detection -- Branch Interaction Network for Person Re-identification -- BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images -- Jointly Discriminating and Frequent Visual Representation Mining -- Discrete Spatial Importance-Based Deep Weighted Hashing -- Low-level Sensor Fusion Network for 3D Vehicle Detection using Radar Range-Azimuth Heatmap and Monocular Image -- MLIFeat: Multi-level information fusion based deep local features -- CLASS: Cross-Level Attention and Supervision for Salient Objects Detection -- Cascaded Transposed Long-range Convolutions for Monocular Depth Estimation -- Optimization, Statistical Methods, and Learning -- Bridging Adversarial and Statistical Domain Transfer via Spectral Adaptation Networks -- Large-Scale Cross-Domain Few-Shot Learning -- Channel Pruning for Accelerating Convolutional Neural Networks via Wasserstein Metric -- Progressive Batching for Efficient Non-linear Least Squares -- Fast and Differentiable Message Passing on Pairwise Markov Random Fields -- A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates -- Graph-based Heuristic Search for Module Selection Procedure in Neural Module Network -- Towards Fast and Robust Adversarial Training for Image Classification -- Few-Shot Zero-Shot Learning: Knowledge Transfer with Less Supervision -- Lossless Image Compression Using a Multi-Scale Progressive Statistical Model -- Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue -- Robot Vision -- Point Proposal based Instance Segmentation with Rectangular Masks for Robot Picking Task -- Multi-task Learning with Future States for Vision-based Autonomous Driving -- MTNAS: Search Multi-Task Networks for Autonomous Driving -- Compact and Fast Underwater Segmentation Network for Autonomous Underwater Vehicles -- L2R GAN: LiDAR-to-Radar Translation -- V2A - Vision to Action: Learning robotic arm actions based on vision and language -- To Filter Prune, or to Layer Prune, That Is The Question. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part III [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 757 p. 245 ilustraciones, 229 ilustraciones en color.
ISBN : 978-3-030-69535-4
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Recognition and Detection -- End-to-end Model-based Gait Recognition -- Horizontal Flipping Assisted Disentangled Feature Learning for Semi-Supervised Person Re-Identification -- MIX'EM: Unsupervised Image Classification using a Mixture of Embeddings -- Backbone Based Feature Enhancement for Object Detection -- Long-Term Cloth-Changing Person Re-identification -- Any-Shot Object Detection -- Background Learnable Cascade for Zero-Shot Object Detection -- Unsupervised Domain Adaptive Object Detection using Forward-Backward Cyclic Adaptation -- COG: COnsistent data auGmentation for object perception -- Synthesizing the Unseen for Zero-shot Object Detection -- Fully Supervised and Guided Distillation for One-Stage Detectors -- Visualizing Color-wise Saliency of Black-Box Image Classification Models -- ERIC: Extracting Relations Inferred from Convolutions -- D2D: Keypoint Extraction with Describe to Detect Approach -- Accurate Arbitrary-Shaped Scene Text Detection via Iterative Polynomial ParameterRegression -- Adaptive Spotting: Deep Reinforcement Object Search in 3D Point Clouds -- Efficient Large-Scale Semantic Visual Localization in 2D Maps -- Synthetic-to-Real Unsupervised Domain Adaptation for Scene Text Detection in the Wild -- Scale-Aware Polar Representation for Arbitrarily-Shaped Text Detection -- Branch Interaction Network for Person Re-identification -- BLT: Balancing Long-Tailed Datasets with Adversarially-Perturbed Images -- Jointly Discriminating and Frequent Visual Representation Mining -- Discrete Spatial Importance-Based Deep Weighted Hashing -- Low-level Sensor Fusion Network for 3D Vehicle Detection using Radar Range-Azimuth Heatmap and Monocular Image -- MLIFeat: Multi-level information fusion based deep local features -- CLASS: Cross-Level Attention and Supervision for Salient Objects Detection -- Cascaded Transposed Long-range Convolutions for Monocular Depth Estimation -- Optimization, Statistical Methods, and Learning -- Bridging Adversarial and Statistical Domain Transfer via Spectral Adaptation Networks -- Large-Scale Cross-Domain Few-Shot Learning -- Channel Pruning for Accelerating Convolutional Neural Networks via Wasserstein Metric -- Progressive Batching for Efficient Non-linear Least Squares -- Fast and Differentiable Message Passing on Pairwise Markov Random Fields -- A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates -- Graph-based Heuristic Search for Module Selection Procedure in Neural Module Network -- Towards Fast and Robust Adversarial Training for Image Classification -- Few-Shot Zero-Shot Learning: Knowledge Transfer with Less Supervision -- Lossless Image Compression Using a Multi-Scale Progressive Statistical Model -- Spatial Class Distribution Shift in Unsupervised Domain Adaptation: Local Alignment Comes to Rescue -- Robot Vision -- Point Proposal based Instance Segmentation with Rectangular Masks for Robot Picking Task -- Multi-task Learning with Future States for Vision-based Autonomous Driving -- MTNAS: Search Multi-Task Networks for Autonomous Driving -- Compact and Fast Underwater Segmentation Network for Autonomous Underwater Vehicles -- L2R GAN: LiDAR-to-Radar Translation -- V2A - Vision to Action: Learning robotic arm actions based on vision and language -- To Filter Prune, or to Layer Prune, That Is The Question. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part IV / Ishikawa, Hiroshi ; Liu, Cheng-Lin ; Pajdla, Tomas ; Shi, Jianbo
![]()
TÃtulo : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part IV Tipo de documento: documento electrónico Autores: Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XVIII, 715 p. 284 ilustraciones, 278 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-69538-5 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones Software de la aplicacion IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Aplicaciones informáticas y de sistemas de información Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Deep Learning for Computer Vision -- In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization -- Exploiting Transferable Knowledge for Fairness-aware Image Classification -- Introspective Learning by Distilling Knowledge from Online Self-explanation -- Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity -- Meta-Learning with Context-Agnostic Initialisations -- Second Order enhanced Multi-glimpse Attention in Visual Question Answering -- Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection -- Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes -- Part-aware Attention Network for Person Re-Identification -- Image Captioning through Image Transformer -- Feature Variance Ratio-Guided Channel Pruning for Deep Convolutional Network Acceleration -- Learn more, forget less: Cues from human brain -- Knowledge Transfer Graph for Deep Collaborative Learning -- Regularizing Meta-Learning via Gradient Dropout -- Vax-a-Net: Training-time Defence Against Adversarial Patch Attacks -- Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed -- Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation -- Double Targeted Universal Adversarial Perturbations -- Adversarially Robust Deep Image Super-Resolution using Entropy Regularization -- Online Knowledge Distillation via Multi-branch Diversity Enhancement -- Rotation Equivariant Orientation Estimation for Omnidirectional Localization -- Contextual Semantic Interpretability -- Few-Shot Object Detection by Second-order Pooling -- Depth-Adapted CNN for RGB-D cameras -- Generative Models for Computer Vision -- Over-exposure Correction via Exposure and Scene Information Disentanglement -- Novel-View Human Action Synthesis -- Augmentation Network for Generalised Zero-Shot Learning -- Local Facial Makeup Transfer via Disentangled Representation -- OpenGAN: Open Set Generative Adversarial Networks -- CPTNet: Cascade Pose Transform Network for Single Image Talking Head Animation -- TinyGAN: Distilling BigGAN for Conditional Image Generation -- A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings -- RF-GAN: A Light and Reconfigurable Network for Unpaired Image-to-Image Translation -- GAN-based Noise Model for Denoising Real Images -- Emotional Landscape Image Generation Using Generative Adversarial Networks -- Feedback Recurrent Autoencoder for Video Compression -- MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative Adversarial Network -- DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution -- dpVAEs: Fixing Sample Generation for Regularized VAEs -- MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network -- EvolGAN: Evolutionary Generative Adversarial Networks -- Sequential View Synthesis with Transformer. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part IV [documento electrónico] / Ishikawa, Hiroshi, ; Liu, Cheng-Lin, ; Pajdla, Tomas, ; Shi, Jianbo, . - 1 ed. . - [s.l.] : Springer, 2021 . - XVIII, 715 p. 284 ilustraciones, 278 ilustraciones en color.
ISBN : 978-3-030-69538-5
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Visión por computador Inteligencia artificial IngenierÃa Informática Red de computadoras Sistemas de reconocimiento de patrones Software de la aplicacion IngenierÃa Informática y Redes Reconocimiento de patrones automatizado Aplicaciones informáticas y de sistemas de información Clasificación: Resumen: El conjunto de seis volúmenes de LNCS 12622-12627 constituye las actas de la 15.ª Conferencia asiática sobre visión artificial, ACCV 2020, celebrada en Kioto (Japón) en noviembre/diciembre de 2020.* El total de 254 contribuciones se revisó cuidadosamente y se seleccionó de 768 presentaciones durante dos rondas de revisión y mejora. Los artÃculos se centran en los siguientes temas: Parte I: visión artificial en 3D; segmentación y agrupamiento Parte II: visión de bajo nivel, procesamiento de imágenes; movimiento y seguimiento Parte III: reconocimiento y detección; optimización, métodos estadÃsticos y aprendizaje; visión robótica Parte IV: aprendizaje profundo para visión artificial, modelos generativos para visión artificial Parte V: rostro, pose, acción y gesto; análisis de vÃdeo y reconocimiento de eventos; análisis de imágenes biomédicas Parte VI: aplicaciones de la visión artificial; visión para X; conjuntos de datos y análisis de rendimiento *La conferencia se celebró de forma virtual. Nota de contenido: Deep Learning for Computer Vision -- In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization -- Exploiting Transferable Knowledge for Fairness-aware Image Classification -- Introspective Learning by Distilling Knowledge from Online Self-explanation -- Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity -- Meta-Learning with Context-Agnostic Initialisations -- Second Order enhanced Multi-glimpse Attention in Visual Question Answering -- Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection -- Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes -- Part-aware Attention Network for Person Re-Identification -- Image Captioning through Image Transformer -- Feature Variance Ratio-Guided Channel Pruning for Deep Convolutional Network Acceleration -- Learn more, forget less: Cues from human brain -- Knowledge Transfer Graph for Deep Collaborative Learning -- Regularizing Meta-Learning via Gradient Dropout -- Vax-a-Net: Training-time Defence Against Adversarial Patch Attacks -- Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed -- Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation -- Double Targeted Universal Adversarial Perturbations -- Adversarially Robust Deep Image Super-Resolution using Entropy Regularization -- Online Knowledge Distillation via Multi-branch Diversity Enhancement -- Rotation Equivariant Orientation Estimation for Omnidirectional Localization -- Contextual Semantic Interpretability -- Few-Shot Object Detection by Second-order Pooling -- Depth-Adapted CNN for RGB-D cameras -- Generative Models for Computer Vision -- Over-exposure Correction via Exposure and Scene Information Disentanglement -- Novel-View Human Action Synthesis -- Augmentation Network for Generalised Zero-Shot Learning -- Local Facial Makeup Transfer via Disentangled Representation -- OpenGAN: Open Set Generative Adversarial Networks -- CPTNet: Cascade Pose Transform Network for Single Image Talking Head Animation -- TinyGAN: Distilling BigGAN for Conditional Image Generation -- A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings -- RF-GAN: A Light and Reconfigurable Network for Unpaired Image-to-Image Translation -- GAN-based Noise Model for Denoising Real Images -- Emotional Landscape Image Generation Using Generative Adversarial Networks -- Feedback Recurrent Autoencoder for Video Compression -- MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative Adversarial Network -- DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution -- dpVAEs: Fixing Sample Generation for Regularized VAEs -- MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network -- EvolGAN: Evolutionary Generative Adversarial Networks -- Sequential View Synthesis with Transformer. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part V / Ishikawa, Hiroshi ; Liu, Cheng-Lin ; Pajdla, Tomas ; Shi, Jianbo
![]()
Permalink15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 – December 4, 2020, Revised Selected Papers, Part VI / Ishikawa, Hiroshi ; Liu, Cheng-Lin ; Pajdla, Tomas ; Shi, Jianbo
![]()
PermalinkAdvances in Brain Inspired Cognitive Systems / Ren, Jinchang ; Hussain, Amir ; Zheng, Jiangbin ; Liu, Cheng-Lin ; Luo, Bin ; Zhao, Huimin ; Zhao, Xinbo
![]()
PermalinkPermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
![]()
PermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
![]()
PermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
![]()
PermalinkPattern Recognition and Computer Vision / Lai, Jian-Huang ; Liu, Cheng-Lin ; Chen, Xilin ; Zhou, Jie ; Tan, Tieniu ; Zheng, Nanning ; Zha, Hongbin
![]()
PermalinkQuantitative Analysis and Optimal Control of Energy Efficiency in Discrete Manufacturing System / Wang, Yan
![]()
Permalink