| TÃtulo : |
A Course on Topological Vector Spaces |
| Tipo de documento: |
documento electrónico |
| Autores: |
Voigt, Jürgen, Autor |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2020 |
| Número de páginas: |
VIII, 155 p. 1 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-3-030-32945-7 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Análisis funcional |
| Ãndice Dewey: |
515.7 Análisis funcional |
| Resumen: |
Este libro proporciona una introducción a la teorÃa de los espacios vectoriales topológicos, centrándose en los espacios localmente convexos. Analiza topologÃas en pares duales, que culminan en el teorema de Mackey-Arens, y también examina las propiedades de la topologÃa débil en espacios de Banach, por ejemplo, el teorema de Banach sobre subespacios débiles*-cerrados en el dual de un espacio de Banach (alias Krein- teorema de Smulian), el teorema de Eberlein-Smulian, el teorema de Krein sobre la carcasa convexa cerrada de conjuntos débilmente compactos en un espacio de Banach y el teorema de Dunford-Pettis que caracteriza la compacidad débil en espacios L1. Por último, se abordan temas como la topologÃa final localmente convexa, con aplicación para probar funciones D(Ω) y el espacio de distribuciones, y el teorema de Krein-Milman. El libro adopta un enfoque "económico" de temas interesantes y evita explorar todos los temas secundarios que surgen. Escrito en un estilo matemático conciso, está destinado principalmente a estudiantes de posgrado avanzados con experiencia en análisis funcional elemental, pero también es útil como texto de referencia para matemáticos establecidos. . |
| Nota de contenido: |
Initial topology, topological vector spaces, weak topology -- Convexity, separation theorems, locally convex spaces -- Polars, bipolar theorem, polar topologies -- The theorems of Tikhonov and Alaoglu-Bourbaki -- The theorem of Mackey-Arens -- Topologies on E'', quasi-barrelled and barrelled spaces -- Reflexivity -- Completeness -- Locally convex final topology, topology of D(\Omega) -- Precompact -- compact – complete -- The theorems of Banach--Dieudonne and Krein—Smulian -- The theorems of Eberlein--Grothendieck and Eberlein—Smulian -- The theorem of Krein -- Weakly compact sets in L_1(\mu) -- \cB_0''=\cB -- The theorem of Krein—Milman -- A The theorem of Hahn-Banach -- B Baire's theorem and the uniform boundedness theorem. |
| En lÃnea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
A Course on Topological Vector Spaces [documento electrónico] / Voigt, Jürgen, Autor . - 1 ed. . - [s.l.] : Springer, 2020 . - VIII, 155 p. 1 ilustraciones en color. ISBN : 978-3-030-32945-7 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Análisis funcional |
| Ãndice Dewey: |
515.7 Análisis funcional |
| Resumen: |
Este libro proporciona una introducción a la teorÃa de los espacios vectoriales topológicos, centrándose en los espacios localmente convexos. Analiza topologÃas en pares duales, que culminan en el teorema de Mackey-Arens, y también examina las propiedades de la topologÃa débil en espacios de Banach, por ejemplo, el teorema de Banach sobre subespacios débiles*-cerrados en el dual de un espacio de Banach (alias Krein- teorema de Smulian), el teorema de Eberlein-Smulian, el teorema de Krein sobre la carcasa convexa cerrada de conjuntos débilmente compactos en un espacio de Banach y el teorema de Dunford-Pettis que caracteriza la compacidad débil en espacios L1. Por último, se abordan temas como la topologÃa final localmente convexa, con aplicación para probar funciones D(Ω) y el espacio de distribuciones, y el teorema de Krein-Milman. El libro adopta un enfoque "económico" de temas interesantes y evita explorar todos los temas secundarios que surgen. Escrito en un estilo matemático conciso, está destinado principalmente a estudiantes de posgrado avanzados con experiencia en análisis funcional elemental, pero también es útil como texto de referencia para matemáticos establecidos. . |
| Nota de contenido: |
Initial topology, topological vector spaces, weak topology -- Convexity, separation theorems, locally convex spaces -- Polars, bipolar theorem, polar topologies -- The theorems of Tikhonov and Alaoglu-Bourbaki -- The theorem of Mackey-Arens -- Topologies on E'', quasi-barrelled and barrelled spaces -- Reflexivity -- Completeness -- Locally convex final topology, topology of D(\Omega) -- Precompact -- compact – complete -- The theorems of Banach--Dieudonne and Krein—Smulian -- The theorems of Eberlein--Grothendieck and Eberlein—Smulian -- The theorem of Krein -- Weakly compact sets in L_1(\mu) -- \cB_0''=\cB -- The theorem of Krein—Milman -- A The theorem of Hahn-Banach -- B Baire's theorem and the uniform boundedness theorem. |
| En lÃnea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |