TÃtulo : |
Handbook of Big Data Analytics |
Tipo de documento: |
documento electrónico |
Autores: |
Härdle, Wolfgang Karl, ; Lu, Henry Horng-Shing, ; Shen, Xiaotong, |
Mención de edición: |
1 ed. |
Editorial: |
[s.l.] : Springer |
Fecha de publicación: |
2018 |
Número de páginas: |
VIII, 538 p. 147 ilustraciones, 109 ilustraciones en color. |
ISBN/ISSN/DL: |
978-3-319-18284-1 |
Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
Idioma : |
Inglés (eng) |
Palabras clave: |
TeorÃa y métodos estadÃsticos. FÃsica Aplicaciones de ingenierÃa matemática y computacional MinerÃa de datos y descubrimiento de conocimientos EstadÃstica y Computación IngenierÃa Matemáticas de ingenierÃa Procesamiento de datos EstadÃstica Infor |
Clasificación: |
519.5 |
Resumen: |
Este manual esencial, que aborda una amplia gama de análisis de big data en aplicaciones interdisciplinarias, se centra en las perspectivas estadÃsticas que ofrecen los desarrollos recientes en este campo. Para ello, cubre métodos estadÃsticos para problemas de alta dimensión, diseños algorÃtmicos, herramientas informáticas, flujos de análisis y los codiseños de software y hardware necesarios para respaldar descubrimientos reveladores a partir de big data. El libro está dirigido principalmente a estadÃsticos, expertos en informática, ingenieros y desarrolladores de aplicaciones interesados ​​en utilizar el análisis de big data con estadÃsticas. Los lectores deben tener una sólida formación en estadÃstica e informática. . |
Nota de contenido: |
Preface -- Statistics, Statisticians, and the Internet of Things (John M. Jordan and Dennis K. J. Lin) -- Cognitive Data Analysis for Big Data (Jing Shyr, Jane Chu and Mike Woods) -- Statistical Leveraging Methods in Big Data (Xinlian Zhang, Rui Xie and Ping Ma) -- Scattered Data and Aggregated Inference (Xiaoming Huo, Cheng Huang and Xuelei Sherry Ni) -- Nonparametric Methods for Big Data Analytics (Hao Helen Zhang) -- Finding Patterns in Time Series (James E. Gentle and Seunghye J. Wilson) -- Variational Bayes for Hierarchical Mixture Models (Muting Wan, James G. Booth and Martin T. Wells) -- Hypothesis Testing for High-Dimensional Data (Wei Biao Wu, Zhipeng Lou and Yuefeng Han) -- High-Dimensional Classification (Hui Zou) -- Analysis of High-Dimensional Regression Models Using Orthogonal Greedy Algorithms (Hsiang-Ling Hsu, Ching-Kang Ing and Tze Leung Lai) -- Semi-Supervised Smoothing for Large Data Problems (Mark Vere Culp, Kenneth Joseph Ryanand George Michailidis) -- Inverse Modeling: A Strategy to Cope with Non-Linearity (Qian Lin, Yang Li and Jun S. Liu) -- Sufficient Dimension Reduction for Tensor Data (Yiwen Liu, Xin Xing and Wenxuan Zhong) -- Compressive Sensing and Sparse Coding (Kevin Chen and H. T. Kung) -- Bridging Density Functional Theory and Big Data Analytics with Applications (Chien-Chang Chen, Hung-Hui Juan, Meng-Yuan Tsai and Henry Horng-Shing Lu) -- Q3-D3-LSA: D3.js and generalized vector space models for Statistical Computing (Lukas Borke and Wolfgang Karl Härdle) -- A Tutorial on Libra: R Package for the Linearized Bregman Algorithm in High-Dimensional Statistics (Jiechao Xiong, Feng Ruan and Yuan Yao) -- Functional Data Analysis for Big Data: A Case Study on California Temperature Trends (Pantelis Zenon Hadjipantelis and Hans-Georg Müller) -- Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via Functional Magnetic Resonance Imaging (Martin Bezener, Lynn E.Eberly, John Hughes, Galin Jones and Donald R. Musgrove) -- Construction of Tight Frames on Graphs and Application to Denoising (Franziska Göbel, Gilles Blanchard and Ulrike von Luxburg) -- Beta-Boosted Ensemble for Big Credit Scoring Data (Maciej Zięba and Wolfgang Karl Härdle) -- . |
Tipo de medio : |
Computadora |
Summary : |
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science. . |
Enlace de acceso : |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
Handbook of Big Data Analytics [documento electrónico] / Härdle, Wolfgang Karl, ; Lu, Henry Horng-Shing, ; Shen, Xiaotong, . - 1 ed. . - [s.l.] : Springer, 2018 . - VIII, 538 p. 147 ilustraciones, 109 ilustraciones en color. ISBN : 978-3-319-18284-1 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés ( eng)
Palabras clave: |
TeorÃa y métodos estadÃsticos. FÃsica Aplicaciones de ingenierÃa matemática y computacional MinerÃa de datos y descubrimiento de conocimientos EstadÃstica y Computación IngenierÃa Matemáticas de ingenierÃa Procesamiento de datos EstadÃstica Infor |
Clasificación: |
519.5 |
Resumen: |
Este manual esencial, que aborda una amplia gama de análisis de big data en aplicaciones interdisciplinarias, se centra en las perspectivas estadÃsticas que ofrecen los desarrollos recientes en este campo. Para ello, cubre métodos estadÃsticos para problemas de alta dimensión, diseños algorÃtmicos, herramientas informáticas, flujos de análisis y los codiseños de software y hardware necesarios para respaldar descubrimientos reveladores a partir de big data. El libro está dirigido principalmente a estadÃsticos, expertos en informática, ingenieros y desarrolladores de aplicaciones interesados ​​en utilizar el análisis de big data con estadÃsticas. Los lectores deben tener una sólida formación en estadÃstica e informática. . |
Nota de contenido: |
Preface -- Statistics, Statisticians, and the Internet of Things (John M. Jordan and Dennis K. J. Lin) -- Cognitive Data Analysis for Big Data (Jing Shyr, Jane Chu and Mike Woods) -- Statistical Leveraging Methods in Big Data (Xinlian Zhang, Rui Xie and Ping Ma) -- Scattered Data and Aggregated Inference (Xiaoming Huo, Cheng Huang and Xuelei Sherry Ni) -- Nonparametric Methods for Big Data Analytics (Hao Helen Zhang) -- Finding Patterns in Time Series (James E. Gentle and Seunghye J. Wilson) -- Variational Bayes for Hierarchical Mixture Models (Muting Wan, James G. Booth and Martin T. Wells) -- Hypothesis Testing for High-Dimensional Data (Wei Biao Wu, Zhipeng Lou and Yuefeng Han) -- High-Dimensional Classification (Hui Zou) -- Analysis of High-Dimensional Regression Models Using Orthogonal Greedy Algorithms (Hsiang-Ling Hsu, Ching-Kang Ing and Tze Leung Lai) -- Semi-Supervised Smoothing for Large Data Problems (Mark Vere Culp, Kenneth Joseph Ryanand George Michailidis) -- Inverse Modeling: A Strategy to Cope with Non-Linearity (Qian Lin, Yang Li and Jun S. Liu) -- Sufficient Dimension Reduction for Tensor Data (Yiwen Liu, Xin Xing and Wenxuan Zhong) -- Compressive Sensing and Sparse Coding (Kevin Chen and H. T. Kung) -- Bridging Density Functional Theory and Big Data Analytics with Applications (Chien-Chang Chen, Hung-Hui Juan, Meng-Yuan Tsai and Henry Horng-Shing Lu) -- Q3-D3-LSA: D3.js and generalized vector space models for Statistical Computing (Lukas Borke and Wolfgang Karl Härdle) -- A Tutorial on Libra: R Package for the Linearized Bregman Algorithm in High-Dimensional Statistics (Jiechao Xiong, Feng Ruan and Yuan Yao) -- Functional Data Analysis for Big Data: A Case Study on California Temperature Trends (Pantelis Zenon Hadjipantelis and Hans-Georg Müller) -- Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via Functional Magnetic Resonance Imaging (Martin Bezener, Lynn E.Eberly, John Hughes, Galin Jones and Donald R. Musgrove) -- Construction of Tight Frames on Graphs and Application to Denoising (Franziska Göbel, Gilles Blanchard and Ulrike von Luxburg) -- Beta-Boosted Ensemble for Big Credit Scoring Data (Maciej Zięba and Wolfgang Karl Härdle) -- . |
Tipo de medio : |
Computadora |
Summary : |
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science. . |
Enlace de acceso : |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
|  |