| Título : |
Paul Lorenzen -- Mathematician and Logician |
| Tipo de documento: |
documento electrónico |
| Autores: |
Heinzmann, Gerhard, ; Wolters, Gereon, |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2021 |
| Número de páginas: |
XII, 268 p. |
| ISBN/ISSN/DL: |
978-3-030-65824-3 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Lógica matemática Lógica Matemática y Fundamentos Filosofía de las Matemáticas Historia Filosofía Matemáticas Historia de las Ciencias Matemáticas |
| Índice Dewey: |
510.1 Filosofía y teoría de las matemáticas |
| Resumen: |
Este libro de acceso abierto examina las numerosas contribuciones de Paul Lorenzen, un destacado filósofo de la segunda mitad del siglo XX. Presenta artículos centrados en la integración del enfoque original de Lorenzen en la historia de la lógica y las matemáticas. Los artículos también exploran cómo los profesionales pueden implementar las ideas sistemáticas de Lorenzen en los debates actuales sobre semántica de la teoría de la prueba, gestión de bancos de datos y estocástica. La cobertura detalla las contribuciones clave de Lorenzen a las matemáticas constructivas, el trabajo de Lorenzen sobre grupos reticulares y la teoría de la divisibilidad, y la teoría de conjuntos moderna y la crítica de Lorenzen al infinito real. Los colaboradores también analizan el problema principal de la prueba de coherencia de Grundlagenforschung y Lorenzen y el programa más amplio de Hilbert. Además, los artículos ofrecen un examen constructivo de una teoría de tipos ramificados al estilo de Russell y una salida al rompecabezas de la circularidad dentro de la justificación operativa de la lógica y las matemáticas. El nombre de Paul Lorenzen está asociado con la Escuela de Constructivismo Metódico de Erlangen, cuyo enfoque en filosofía lingüística y filosofía de la ciencia determinó las discusiones filosóficas, especialmente en Alemania en los años 1960 y 1970. Este volumen presenta 10 artículos de una reunión que tuvo lugar en la Universidad de Konstanz. |
| Nota de contenido: |
Preface -- Chapter 1. Introduction (Gerhard Heinzmann) -- Chapter 2. N.N (Kuno Lorenz) -- Chapter 3. Some contributions of Lorenzen to constructive mathematics and an application to constructive measure theory (Thierry Coquand) -- Chapter 4. Lorenzeṇ's work on lattice-groups and divisibility theory. From a classical celebrated result to a relevant constructive rewriting (Henri Lombardi) -- Chapter 5. Lorenzeṇ's reshaping of Krull's Fundamentalsatz for integral domains (1939–1953) (Stefan Neuwirth) -- Chapter 6. Extension by Conservation (Peter M. Schuster) -- Chapter 7. Modern set theory and Lorenzen's critique of actual infinity (Carolin Antos) -- Chapter 8. The main problem of Grundlagenforschung (Jan von Plato) -- Chapter 9. Lorenzen's consistency proof and Hilbert's larger programme (Reinhard Kahle) -- Chapter 10. From Lorenzen's dialogue game to game semantics for substructural logics (Christian Fermüller) -- Chapter 11. A Constructive Examination of a Russell-style Ramified Type Theory(Erik Palmgren) -- Chapter 12. A circularity puzzle within the operative justification of logic and mathematics and a way out (Shahid Rahman). |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Paul Lorenzen -- Mathematician and Logician [documento electrónico] / Heinzmann, Gerhard, ; Wolters, Gereon, . - 1 ed. . - [s.l.] : Springer, 2021 . - XII, 268 p. ISBN : 978-3-030-65824-3 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Lógica matemática Lógica Matemática y Fundamentos Filosofía de las Matemáticas Historia Filosofía Matemáticas Historia de las Ciencias Matemáticas |
| Índice Dewey: |
510.1 Filosofía y teoría de las matemáticas |
| Resumen: |
Este libro de acceso abierto examina las numerosas contribuciones de Paul Lorenzen, un destacado filósofo de la segunda mitad del siglo XX. Presenta artículos centrados en la integración del enfoque original de Lorenzen en la historia de la lógica y las matemáticas. Los artículos también exploran cómo los profesionales pueden implementar las ideas sistemáticas de Lorenzen en los debates actuales sobre semántica de la teoría de la prueba, gestión de bancos de datos y estocástica. La cobertura detalla las contribuciones clave de Lorenzen a las matemáticas constructivas, el trabajo de Lorenzen sobre grupos reticulares y la teoría de la divisibilidad, y la teoría de conjuntos moderna y la crítica de Lorenzen al infinito real. Los colaboradores también analizan el problema principal de la prueba de coherencia de Grundlagenforschung y Lorenzen y el programa más amplio de Hilbert. Además, los artículos ofrecen un examen constructivo de una teoría de tipos ramificados al estilo de Russell y una salida al rompecabezas de la circularidad dentro de la justificación operativa de la lógica y las matemáticas. El nombre de Paul Lorenzen está asociado con la Escuela de Constructivismo Metódico de Erlangen, cuyo enfoque en filosofía lingüística y filosofía de la ciencia determinó las discusiones filosóficas, especialmente en Alemania en los años 1960 y 1970. Este volumen presenta 10 artículos de una reunión que tuvo lugar en la Universidad de Konstanz. |
| Nota de contenido: |
Preface -- Chapter 1. Introduction (Gerhard Heinzmann) -- Chapter 2. N.N (Kuno Lorenz) -- Chapter 3. Some contributions of Lorenzen to constructive mathematics and an application to constructive measure theory (Thierry Coquand) -- Chapter 4. Lorenzeṇ's work on lattice-groups and divisibility theory. From a classical celebrated result to a relevant constructive rewriting (Henri Lombardi) -- Chapter 5. Lorenzeṇ's reshaping of Krull's Fundamentalsatz for integral domains (1939–1953) (Stefan Neuwirth) -- Chapter 6. Extension by Conservation (Peter M. Schuster) -- Chapter 7. Modern set theory and Lorenzen's critique of actual infinity (Carolin Antos) -- Chapter 8. The main problem of Grundlagenforschung (Jan von Plato) -- Chapter 9. Lorenzen's consistency proof and Hilbert's larger programme (Reinhard Kahle) -- Chapter 10. From Lorenzen's dialogue game to game semantics for substructural logics (Christian Fermüller) -- Chapter 11. A Constructive Examination of a Russell-style Ramified Type Theory(Erik Palmgren) -- Chapter 12. A circularity puzzle within the operative justification of logic and mathematics and a way out (Shahid Rahman). |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |