| Título : |
Genetic Programming Theory and Practice XVII |
| Tipo de documento: |
documento electrónico |
| Autores: |
Banzhaf, Wolfgang, ; Goodman, Erik, ; Sheneman, Leigh, ; Trujillo, Leonardo, ; Worzel, Bill, |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2020 |
| Número de páginas: |
XXVI, 409 p. 142 ilustraciones, 112 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-3-030-39958-0 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Inteligencia Computacional Inteligencia artificial Algoritmo |
| Índice Dewey: |
006.3 Inteligencia artificial |
| Resumen: |
Estas contribuciones, escritas por los principales investigadores y profesionales internacionales de la Programación Genética (GP), exploran la sinergia entre los resultados teóricos y empíricos sobre problemas del mundo real, produciendo una visión integral del estado del arte en GP. En la edición de este año, los temas cubiertos incluyen muchas de las cuestiones y preguntas de investigación más importantes en el campo, tales como: dominios de aplicación oportunos para métodos basados en GP, juegos y búsqueda coevolutiva, regresión simbólica y estrategias de aprendizaje eficientes, codificaciones y representaciones de GP, teoremas de esquema y nuevos mecanismos de selección. El volumen incluye varios capítulos sobre mejores prácticas y lecciones aprendidas de la experiencia práctica. Los lectores descubrirán aplicaciones de GP a gran escala y del mundo real en una variedad de dominios problemáticos a través de presentaciones detalladas de los resultados más recientes y significativos. |
| Nota de contenido: |
1. Characterizing the Effects of Random Subsampling on Lexicase Selection -- 2. It is Time for New Perspectives on How to Fight Bloatin GP -- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm -- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics? -- 5. Symbolic Regression by Exhaustive Search – Reducing the Search Space using Syntactical Constraints and Efficient Semantic Structure Deduplication -- 6. Temporal Memory Sharing in Visual Reinforcement Learning -- 7. The Evolution of Representations in Genetic Programming Trees -- 8. How Competitive is Genetic Programming in Business Data Science Applications? -- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming -- 10. Evolutionary Computation and AI Safety -- 11. Genetic Programming Symbolic Regression -- 12. Hands-on Artificial Evolution through Brain Programming -- 13. Comparison of Linear Genome Representations For Software Synthesis -- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation -- 15. New Pathways in Coevolutionary Computation -- 16. 2019 Evolutionary Algorithms Review -- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model -- 18. Modelling Genetic Programming as a Simple Sampling Algorithm -- 19. An Evolutionary System for Better Automatic Software Repair -- Index. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Genetic Programming Theory and Practice XVII [documento electrónico] / Banzhaf, Wolfgang, ; Goodman, Erik, ; Sheneman, Leigh, ; Trujillo, Leonardo, ; Worzel, Bill, . - 1 ed. . - [s.l.] : Springer, 2020 . - XXVI, 409 p. 142 ilustraciones, 112 ilustraciones en color. ISBN : 978-3-030-39958-0 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Inteligencia Computacional Inteligencia artificial Algoritmo |
| Índice Dewey: |
006.3 Inteligencia artificial |
| Resumen: |
Estas contribuciones, escritas por los principales investigadores y profesionales internacionales de la Programación Genética (GP), exploran la sinergia entre los resultados teóricos y empíricos sobre problemas del mundo real, produciendo una visión integral del estado del arte en GP. En la edición de este año, los temas cubiertos incluyen muchas de las cuestiones y preguntas de investigación más importantes en el campo, tales como: dominios de aplicación oportunos para métodos basados en GP, juegos y búsqueda coevolutiva, regresión simbólica y estrategias de aprendizaje eficientes, codificaciones y representaciones de GP, teoremas de esquema y nuevos mecanismos de selección. El volumen incluye varios capítulos sobre mejores prácticas y lecciones aprendidas de la experiencia práctica. Los lectores descubrirán aplicaciones de GP a gran escala y del mundo real en una variedad de dominios problemáticos a través de presentaciones detalladas de los resultados más recientes y significativos. |
| Nota de contenido: |
1. Characterizing the Effects of Random Subsampling on Lexicase Selection -- 2. It is Time for New Perspectives on How to Fight Bloatin GP -- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm -- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics? -- 5. Symbolic Regression by Exhaustive Search – Reducing the Search Space using Syntactical Constraints and Efficient Semantic Structure Deduplication -- 6. Temporal Memory Sharing in Visual Reinforcement Learning -- 7. The Evolution of Representations in Genetic Programming Trees -- 8. How Competitive is Genetic Programming in Business Data Science Applications? -- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming -- 10. Evolutionary Computation and AI Safety -- 11. Genetic Programming Symbolic Regression -- 12. Hands-on Artificial Evolution through Brain Programming -- 13. Comparison of Linear Genome Representations For Software Synthesis -- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation -- 15. New Pathways in Coevolutionary Computation -- 16. 2019 Evolutionary Algorithms Review -- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model -- 18. Modelling Genetic Programming as a Simple Sampling Algorithm -- 19. An Evolutionary System for Better Automatic Software Repair -- Index. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |