| TÃtulo : |
Wireless Mobile Communication and Healthcare : 9th EAI International Conference, MobiHealth 2020, Virtual Event, November 19, 2020, Proceedings |
| Tipo de documento: |
documento electrónico |
| Autores: |
Ye, Juan, ; O'Grady, Michael J., ; Civitarese, Gabriele, ; Yordanova, Kristina, |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2021 |
| Número de páginas: |
XI, 364 p. 16 ilustraciones, 1 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-3-030-70569-5 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Informática Médica IngenierÃa Informática Red de computadoras Inteligencia artificial Software de la aplicacion Informática de la Salud IngenierÃa Informática y Redes Aplicaciones informáticas y de sistemas de información |
| Ãndice Dewey: |
610.285 |
| Resumen: |
Este libro constituye las actas posteriores a la conferencia arbitradas de la 9.ª Conferencia Internacional sobre Comunicaciones Móviles y Atención Médica, MobiHealth 2020, celebrada en diciembre de 2020. Debido a la pandemia de Covid-19, la conferencia se celebró de forma virtual. El libro contiene 13 artÃculos completos seleccionados de la conferencia principal y 10 artÃculos completos de dos talleres sobre inteligencia artificial médica y tecnologÃas sanitarias digitales. Las ponencias de la conferencia están organizadas en secciones temáticas sobre tecnologÃas portátiles; telemetrÃa sanitaria; detección y evaluación móviles; Aprendizaje automático en aplicaciones de eSalud. |
| Nota de contenido: |
Experiences in Designing a Mobile Speech-Based Assessment Tool for Neurological Diseases -- Patient-independent Schizophrenia Relapse Prediction Using Mobile Sensor based Daily Behavioral Rhythm Changes -- Understanding E-Mental Health for People with Depression: An Evaluation Study -- Evaluating memory and cognition via a wearable EEG system: a preliminary study -- Towards Mobile-based Preprocessing Pipeline for Electroencephalography (EEG) Analyses: The Case of Tinnitus -- Machine Learning in eHealth Applications.-Forecasting Health and Wellbeing for Shift Workers Using Job-role Based Deep Neural Network -- A Deep Learning Model for Exercise-Based Rehabilitation using Multi-channel Time-Series Data from a Single Wearable Sensor -- Bayesian Inference Federated Learning for Heart Rate Prediction -- Health Telemetry and Platforms -- A home-based self-administered assessment of neck proprioception.-Health Telescope: system design for longitudinal data collection using mobile applications.-Design of a Mobile-Based Neurological Assessment Tool for Aging Populations.-Improving Patient Throughput By Streamlining The Surgical Care-Pathway Process.-Connect - Blockchain and Self-Sovereign Identity Empowered Contact Tracing Platform.-EAI International Workshop on Medical Artificial Intelligence 2020.-Expanding eVision's Granularity of Influenza Forecasting.-Explainable Deep Learning for Medical Time Series Data.-The effects of masking when classifying images of melanoma through CNNs.-Robust and markerfree in vitro axon segmentation with CNNs.-Using Bayesian Optimization to Effectively Tune Random Forest and XGBoost Hyperparameters for Early Alzheimer's Disease Diagnosis.-A Proposal of Clinical Decision Support System using Ensemble Learning For Coronary Artery Disease Diagnosis.-Deep-Learning-based Feature Encoding of Clinical Parametersfor Patient Specifc CTA Dose Optimization COVID-19 patient outcome prediction using selected features from emergency department data and feed-forward neural networks.-EAI International Workshop on Digital Healthcare Technologies for the Global South.-Validation of Omron Wearable Blood Pressure Monitor HeartGuide in Free-living Environments.-Artificial Empathy for Clinical Companion Robots with Privacy-by-Design. |
| En lÃnea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Wireless Mobile Communication and Healthcare : 9th EAI International Conference, MobiHealth 2020, Virtual Event, November 19, 2020, Proceedings [documento electrónico] / Ye, Juan, ; O'Grady, Michael J., ; Civitarese, Gabriele, ; Yordanova, Kristina, . - 1 ed. . - [s.l.] : Springer, 2021 . - XI, 364 p. 16 ilustraciones, 1 ilustraciones en color. ISBN : 978-3-030-70569-5 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Informática Médica IngenierÃa Informática Red de computadoras Inteligencia artificial Software de la aplicacion Informática de la Salud IngenierÃa Informática y Redes Aplicaciones informáticas y de sistemas de información |
| Ãndice Dewey: |
610.285 |
| Resumen: |
Este libro constituye las actas posteriores a la conferencia arbitradas de la 9.ª Conferencia Internacional sobre Comunicaciones Móviles y Atención Médica, MobiHealth 2020, celebrada en diciembre de 2020. Debido a la pandemia de Covid-19, la conferencia se celebró de forma virtual. El libro contiene 13 artÃculos completos seleccionados de la conferencia principal y 10 artÃculos completos de dos talleres sobre inteligencia artificial médica y tecnologÃas sanitarias digitales. Las ponencias de la conferencia están organizadas en secciones temáticas sobre tecnologÃas portátiles; telemetrÃa sanitaria; detección y evaluación móviles; Aprendizaje automático en aplicaciones de eSalud. |
| Nota de contenido: |
Experiences in Designing a Mobile Speech-Based Assessment Tool for Neurological Diseases -- Patient-independent Schizophrenia Relapse Prediction Using Mobile Sensor based Daily Behavioral Rhythm Changes -- Understanding E-Mental Health for People with Depression: An Evaluation Study -- Evaluating memory and cognition via a wearable EEG system: a preliminary study -- Towards Mobile-based Preprocessing Pipeline for Electroencephalography (EEG) Analyses: The Case of Tinnitus -- Machine Learning in eHealth Applications.-Forecasting Health and Wellbeing for Shift Workers Using Job-role Based Deep Neural Network -- A Deep Learning Model for Exercise-Based Rehabilitation using Multi-channel Time-Series Data from a Single Wearable Sensor -- Bayesian Inference Federated Learning for Heart Rate Prediction -- Health Telemetry and Platforms -- A home-based self-administered assessment of neck proprioception.-Health Telescope: system design for longitudinal data collection using mobile applications.-Design of a Mobile-Based Neurological Assessment Tool for Aging Populations.-Improving Patient Throughput By Streamlining The Surgical Care-Pathway Process.-Connect - Blockchain and Self-Sovereign Identity Empowered Contact Tracing Platform.-EAI International Workshop on Medical Artificial Intelligence 2020.-Expanding eVision's Granularity of Influenza Forecasting.-Explainable Deep Learning for Medical Time Series Data.-The effects of masking when classifying images of melanoma through CNNs.-Robust and markerfree in vitro axon segmentation with CNNs.-Using Bayesian Optimization to Effectively Tune Random Forest and XGBoost Hyperparameters for Early Alzheimer's Disease Diagnosis.-A Proposal of Clinical Decision Support System using Ensemble Learning For Coronary Artery Disease Diagnosis.-Deep-Learning-based Feature Encoding of Clinical Parametersfor Patient Specifc CTA Dose Optimization COVID-19 patient outcome prediction using selected features from emergency department data and feed-forward neural networks.-EAI International Workshop on Digital Healthcare Technologies for the Global South.-Validation of Omron Wearable Blood Pressure Monitor HeartGuide in Free-living Environments.-Artificial Empathy for Clinical Companion Robots with Privacy-by-Design. |
| En lÃnea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |