Información del autor
Autor Min, Zhe |
Documentos disponibles escritos por este autor (1)
Crear una solicitud de compra Refinar búsqueda
Simplifying Medical Ultrasound / Noble, J. Alison ; Aylward, Stephen ; Grimwood, Alexander ; Min, Zhe ; Lee, Su-Lin ; Hu, Yipeng
TÃtulo : Simplifying Medical Ultrasound : Second International Workshop, ASMUS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings Tipo de documento: documento electrónico Autores: Noble, J. Alison, ; Aylward, Stephen, ; Grimwood, Alexander, ; Min, Zhe, ; Lee, Su-Lin, ; Hu, Yipeng, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XIII, 230 p. 77 ilustraciones, 64 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-87583-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Procesamiento de imágenes Visión por computador Inteligencia artificial Bioinformática Imágenes por computadora visión reconocimiento de patrones y gráficos BiologÃa Computacional y de Sistemas Clasificación: 6 Resumen: Este libro constituye las actas del Segundo Taller Internacional sobre Avances en la Simplificación de la UltrasonografÃa Médica, ASMUS 2021, celebrado el 27 de septiembre de 2021, junto con MICCAI 2021, la 24.ª Conferencia Internacional sobre Computación de Imágenes Médicas e Intervención Asistida por Computadora. La conferencia estaba prevista para celebrarse en Estrasburgo, Francia, pero se cambió a un evento en lÃnea debido a la pandemia de coronavirus. Los 22 artÃculos presentados en este libro fueron cuidadosamente revisados ​​y seleccionados de 30 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: segmentación y detección; registro, guÃa y robótica; clasificación y sÃntesis de imágenes; y evaluación de la calidad e imágenes cuantitativas. Nota de contenido: Automatic ultrasound vessel segmentation with deep spatiotemporal context learning -- Multimodal continual learning with sonographer eye-tracking in fetal ultrasound -- Development and evaluation of intraoperative ultrasound segmentation with negative image frames and multiple observer labels -- Automatic tomographic ultrasound imaging sequence extraction of the anal sphincter -- Lung Ultrasound Segmentation and Adaptation between COVID-19 and Community-Acquired Pneumonia -- An Efficient Tracker for Thyroid Nodule Detection and Tracking during Ultrasound Scanning -- TransBridge: A lightweight transformer for left ventricle segmentation in echocardiography -- Adversarial Affine Registration for Real-time Intraoperative Registration of 3-D US-US for Brain Shift Correction -- Robust ultrasound-to-ultrasound registration for intra-operative brain shift correction with a Siamese neural network -- Pose Estimation of 2D Ultrasound Probe from Ultrasound Image Sequences Using CNN and RNN -- Evaluation of low-cost hardware alternatives for 3D freehand ultrasound reconstruction in image-guided neurosurgery -- Application potential of robot-guided ultrasound during CT-guided interventions -- Towards Scale and Position Invariant Task Classification using Normalised Visual Scanpaths in Clinical Fetal Ultrasound -- Efficient Echocardiogram View Classification with Sampling-Free Uncertainty Estimation -- Contrastive Learning for View Classification of Echocardiograms -- Imaging Biomarker Knowledge Transfer for Attention-based Diagnosis of COVID-19 in Lung Ultrasound Videos -- Endoscopic ultrasound image synthesis using a cycle-consistent adversarial network -- Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease -- Adaptable image quality assessment using meta-reinforcement learning of task amenability -- Deep Video Networks for Automatic Assessment of Aortic Stenosis in Echocardiography -- Pruning MobileNetV2 for Efficient Implementation of Minimum Variance Beamforming -- Automatic fetal gestational age estimation from first trimester scans. Tipo de medio : Computadora Summary : This book constitutes the proceedings of the Second International Workshop on Advances in Simplifying Medical UltraSound, ASMUS 2021, held on September 27, 2021, in conjunction with MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference was planned to take place in Strasbourg, France, but changed to an online event due to the Coronavirus pandemic. The 22 papers presented in this book were carefully reviewed and selected from 30 submissions. They were organized in topical sections as follows: segmentation and detection; registration, guidance and robotics; classification and image synthesis; and quality assessment and quantitative imaging. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Simplifying Medical Ultrasound : Second International Workshop, ASMUS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings [documento electrónico] / Noble, J. Alison, ; Aylward, Stephen, ; Grimwood, Alexander, ; Min, Zhe, ; Lee, Su-Lin, ; Hu, Yipeng, . - 1 ed. . - [s.l.] : Springer, 2021 . - XIII, 230 p. 77 ilustraciones, 64 ilustraciones en color.
ISBN : 978-3-030-87583-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Procesamiento de imágenes Visión por computador Inteligencia artificial Bioinformática Imágenes por computadora visión reconocimiento de patrones y gráficos BiologÃa Computacional y de Sistemas Clasificación: 6 Resumen: Este libro constituye las actas del Segundo Taller Internacional sobre Avances en la Simplificación de la UltrasonografÃa Médica, ASMUS 2021, celebrado el 27 de septiembre de 2021, junto con MICCAI 2021, la 24.ª Conferencia Internacional sobre Computación de Imágenes Médicas e Intervención Asistida por Computadora. La conferencia estaba prevista para celebrarse en Estrasburgo, Francia, pero se cambió a un evento en lÃnea debido a la pandemia de coronavirus. Los 22 artÃculos presentados en este libro fueron cuidadosamente revisados ​​y seleccionados de 30 presentaciones. Se organizaron en secciones temáticas de la siguiente manera: segmentación y detección; registro, guÃa y robótica; clasificación y sÃntesis de imágenes; y evaluación de la calidad e imágenes cuantitativas. Nota de contenido: Automatic ultrasound vessel segmentation with deep spatiotemporal context learning -- Multimodal continual learning with sonographer eye-tracking in fetal ultrasound -- Development and evaluation of intraoperative ultrasound segmentation with negative image frames and multiple observer labels -- Automatic tomographic ultrasound imaging sequence extraction of the anal sphincter -- Lung Ultrasound Segmentation and Adaptation between COVID-19 and Community-Acquired Pneumonia -- An Efficient Tracker for Thyroid Nodule Detection and Tracking during Ultrasound Scanning -- TransBridge: A lightweight transformer for left ventricle segmentation in echocardiography -- Adversarial Affine Registration for Real-time Intraoperative Registration of 3-D US-US for Brain Shift Correction -- Robust ultrasound-to-ultrasound registration for intra-operative brain shift correction with a Siamese neural network -- Pose Estimation of 2D Ultrasound Probe from Ultrasound Image Sequences Using CNN and RNN -- Evaluation of low-cost hardware alternatives for 3D freehand ultrasound reconstruction in image-guided neurosurgery -- Application potential of robot-guided ultrasound during CT-guided interventions -- Towards Scale and Position Invariant Task Classification using Normalised Visual Scanpaths in Clinical Fetal Ultrasound -- Efficient Echocardiogram View Classification with Sampling-Free Uncertainty Estimation -- Contrastive Learning for View Classification of Echocardiograms -- Imaging Biomarker Knowledge Transfer for Attention-based Diagnosis of COVID-19 in Lung Ultrasound Videos -- Endoscopic ultrasound image synthesis using a cycle-consistent adversarial network -- Realistic Ultrasound Image Synthesis for Improved Classification of Liver Disease -- Adaptable image quality assessment using meta-reinforcement learning of task amenability -- Deep Video Networks for Automatic Assessment of Aortic Stenosis in Echocardiography -- Pruning MobileNetV2 for Efficient Implementation of Minimum Variance Beamforming -- Automatic fetal gestational age estimation from first trimester scans. Tipo de medio : Computadora Summary : This book constitutes the proceedings of the Second International Workshop on Advances in Simplifying Medical UltraSound, ASMUS 2021, held on September 27, 2021, in conjunction with MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference was planned to take place in Strasbourg, France, but changed to an online event due to the Coronavirus pandemic. The 22 papers presented in this book were carefully reviewed and selected from 30 submissions. They were organized in topical sections as follows: segmentation and detection; registration, guidance and robotics; classification and image synthesis; and quality assessment and quantitative imaging. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]