| Título : |
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis : First International Workshop, ASMUS 2020, and 5th International Workshop, PIPPI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings |
| Tipo de documento: |
documento electrónico |
| Autores: |
Hu, Yipeng, ; Licandro, Roxane, ; Noble, J. Alison, ; Hutter, Jana, ; Aylward, Stephen, ; Melbourne, Andrew, ; Abaci Turk, Esra, ; Torrents Barrena, Jordina, |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2020 |
| Número de páginas: |
XIV, 345 p. 188 ilustraciones, 116 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-3-030-60334-2 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Procesamiento de imágenes Visión por computador Ciencias sociales Red de computadoras Software de la aplicacion Imágenes por computadora visión reconocimiento de patrones y gráficos Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Redes de comunicación informática Aplicaciones informáticas y de sistemas de información |
| Índice Dewey: |
6 |
| Resumen: |
Este libro constituye las actas del Primer Taller Internacional sobre Avances en la Simplificación del UltraSound Médico, ASMUS 2020, y el 5to Taller Internacional sobre Análisis de Imágenes Perinatales, Prematuros y Pediátricas, PIPPI 2020, celebrado junto con MICCAI 2020, la 23a Conferencia Internacional sobre Medicina. Computación de la Imagen e Intervención Asistida por Computadora. La conferencia estaba prevista para realizarse en Lima, Perú, pero cambió a un evento en línea debido a la pandemia de coronavirus. Para ASMUS 2020, se aceptaron 19 contribuciones de 26 presentaciones; Las 14 contribuciones del taller de PIPPI fueron cuidadosamente revisadas y seleccionadas entre 21 presentaciones. Los artículos se organizaron en secciones temáticas denominadas: diagnóstico y medición; segmentación, subtítulos y mejora; localización y orientación; robótica y evaluación de habilidades, y PIPPI 2020. |
| Nota de contenido: |
Remote Intelligent Assisted Diagnosis System for Hepatic Echinococcosis -- Calibrated Bayesian neural networks to estimate gestational age and its uncertainty on fetal brain ultrasound images -- Automatic Optic Nerve Sheath Measurement in Point-of-Care Ultrasound -- Deep Learning for Automatic Spleen Length Measurement in Sickle Cell Disease Patients -- Cross-Device Cross-Anatomy Adaptation Network for Ultrasound Video Analysis -- Guidewire Segmentation in 4D Ultrasound Sequences Using Recurrent Fully Convolutional Networks -- Embedding Weighted Feature Aggregation Network with Domain Knowledge Integration for Breast Ultrasound Image Segmentation -- A Curriculum Learning Based Approach to Captioning Ultrasound Images -- Deep Image Translation for Enhancing Simulated Ultrasound Images -- Localizing 2D Ultrasound Probe from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction -- Augmented Reality-Based Lung Ultrasound Scanning Guidance -- Multimodality Biomedical Image Registration using Free Point Transformer Networks -- Label Efficient Localization of Fetal Brain Biometry Planes In Ultrasound Through Metric Learning -- Automatic C-plane detection in pelvic oor transperineal volumetric ultrasound -- Unsupervised Cross-domain Image Classification by Distance Metric Guided Feature Alignment -- Dual-Robotic Ultrasound System for In Vivo Prostate Tomography -- IoT-based Remote Control Study of a Robotic Trans-esophageal Ultrasound Probe via LAN and 5G -- Differentiating Operator Skill during Routine Fetal Ultrasound Scanning using Probe Motion Tracking -- Kinematics Data Representations for Skills Assessment in Ultrasound-Guided Needle Insertion -- 3D Fetal Pose Estimation with Adaptive Variance and Conditional Generative Adversarial Network -- Atlas-based segmentation of the human embryo using deep learning with minimal supervision -- Deformable Slice-to-Volume Registration for Reconstruction of Quantitative T2* Placental and Fetal MRI -- A Smartphone-based System for Real-time Early Childhood Caries Diagnosis -- Automated Detection of Congenital Heart Disease in Fetal Ultrasound Screening -- Harmonised segmentation of neonatal brain MRI: a domain adaptation approach -- A multi-task approach using positional information for ultrasound placenta segmentation -- Spontaneous preterm birth prediction using convolutional neural networks -- Multi-Modal Perceptual Adversarial Learning for Longitudinal Prediction of Infant MR Images -- Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels -- Deep Learning Spatial Compounding from Multiple Fetal Head Ultrasound Acquisitions -- Brain volume and neuropsychological differences in extremely preterm adolescents -- Automatic Detection of Neonatal Brain Injury on MRI -- Unbiased atlas construction for neonatal cortical surfaces via unsupervised learning. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis : First International Workshop, ASMUS 2020, and 5th International Workshop, PIPPI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings [documento electrónico] / Hu, Yipeng, ; Licandro, Roxane, ; Noble, J. Alison, ; Hutter, Jana, ; Aylward, Stephen, ; Melbourne, Andrew, ; Abaci Turk, Esra, ; Torrents Barrena, Jordina, . - 1 ed. . - [s.l.] : Springer, 2020 . - XIV, 345 p. 188 ilustraciones, 116 ilustraciones en color. ISBN : 978-3-030-60334-2 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Procesamiento de imágenes Visión por computador Ciencias sociales Red de computadoras Software de la aplicacion Imágenes por computadora visión reconocimiento de patrones y gráficos Aplicación informática en ciencias sociales y del comportamiento Computadoras y Educación Redes de comunicación informática Aplicaciones informáticas y de sistemas de información |
| Índice Dewey: |
6 |
| Resumen: |
Este libro constituye las actas del Primer Taller Internacional sobre Avances en la Simplificación del UltraSound Médico, ASMUS 2020, y el 5to Taller Internacional sobre Análisis de Imágenes Perinatales, Prematuros y Pediátricas, PIPPI 2020, celebrado junto con MICCAI 2020, la 23a Conferencia Internacional sobre Medicina. Computación de la Imagen e Intervención Asistida por Computadora. La conferencia estaba prevista para realizarse en Lima, Perú, pero cambió a un evento en línea debido a la pandemia de coronavirus. Para ASMUS 2020, se aceptaron 19 contribuciones de 26 presentaciones; Las 14 contribuciones del taller de PIPPI fueron cuidadosamente revisadas y seleccionadas entre 21 presentaciones. Los artículos se organizaron en secciones temáticas denominadas: diagnóstico y medición; segmentación, subtítulos y mejora; localización y orientación; robótica y evaluación de habilidades, y PIPPI 2020. |
| Nota de contenido: |
Remote Intelligent Assisted Diagnosis System for Hepatic Echinococcosis -- Calibrated Bayesian neural networks to estimate gestational age and its uncertainty on fetal brain ultrasound images -- Automatic Optic Nerve Sheath Measurement in Point-of-Care Ultrasound -- Deep Learning for Automatic Spleen Length Measurement in Sickle Cell Disease Patients -- Cross-Device Cross-Anatomy Adaptation Network for Ultrasound Video Analysis -- Guidewire Segmentation in 4D Ultrasound Sequences Using Recurrent Fully Convolutional Networks -- Embedding Weighted Feature Aggregation Network with Domain Knowledge Integration for Breast Ultrasound Image Segmentation -- A Curriculum Learning Based Approach to Captioning Ultrasound Images -- Deep Image Translation for Enhancing Simulated Ultrasound Images -- Localizing 2D Ultrasound Probe from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction -- Augmented Reality-Based Lung Ultrasound Scanning Guidance -- Multimodality Biomedical Image Registration using Free Point Transformer Networks -- Label Efficient Localization of Fetal Brain Biometry Planes In Ultrasound Through Metric Learning -- Automatic C-plane detection in pelvic oor transperineal volumetric ultrasound -- Unsupervised Cross-domain Image Classification by Distance Metric Guided Feature Alignment -- Dual-Robotic Ultrasound System for In Vivo Prostate Tomography -- IoT-based Remote Control Study of a Robotic Trans-esophageal Ultrasound Probe via LAN and 5G -- Differentiating Operator Skill during Routine Fetal Ultrasound Scanning using Probe Motion Tracking -- Kinematics Data Representations for Skills Assessment in Ultrasound-Guided Needle Insertion -- 3D Fetal Pose Estimation with Adaptive Variance and Conditional Generative Adversarial Network -- Atlas-based segmentation of the human embryo using deep learning with minimal supervision -- Deformable Slice-to-Volume Registration for Reconstruction of Quantitative T2* Placental and Fetal MRI -- A Smartphone-based System for Real-time Early Childhood Caries Diagnosis -- Automated Detection of Congenital Heart Disease in Fetal Ultrasound Screening -- Harmonised segmentation of neonatal brain MRI: a domain adaptation approach -- A multi-task approach using positional information for ultrasound placenta segmentation -- Spontaneous preterm birth prediction using convolutional neural networks -- Multi-Modal Perceptual Adversarial Learning for Longitudinal Prediction of Infant MR Images -- Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels -- Deep Learning Spatial Compounding from Multiple Fetal Head Ultrasound Acquisitions -- Brain volume and neuropsychological differences in extremely preterm adolescents -- Automatic Detection of Neonatal Brain Injury on MRI -- Unbiased atlas construction for neonatal cortical surfaces via unsupervised learning. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |