Información del autor
Autor Ventura, Sebastian |
Documentos disponibles escritos por este autor (3)
Crear una solicitud de compra Refinar búsqueda
Machine Learning and Principles and Practice of Knowledge Discovery in Databases / Kamp, Michael ; Koprinska, Irena ; Bibal, Adrien ; Bouadi, Tassadit ; Frénay, Benoît ; Galárraga, Luis ; Oramas, José ; Adilova, Linara ; Krishnamurthy, Yamuna ; Kang, Bo ; Largeron, Christine ; Lijffijt, Jefrey ; Viard, Tiphaine ; Welke, Pascal ; Ruocco, Massimiliano ; Aune, Erlend ; Gallicchio, Claudio ; Schiele, Gregor ; Pernkopf, Franz ; Blott, Michaela ; Fröning, Holger ; Schindler, Günther ; Guidotti, Riccardo ; Monreale, Anna ; Rinzivillo, Salvatore ; Biecek, Przemyslaw ; Ntoutsi, Eirini ; Pechenizkiy, Mykola ; Rosenhahn, Bodo ; Buckley, Christopher ; Cialfi, Daniela ; Lanillos, Pablo ; Ramstead, Maxwell ; Verbelen, Tim ; Ferreira, Pedro M. ; Andresini, Giuseppina ; Malerba, Donato ; Medeiros, Ibéria ; Fournier-Viger, Philippe ; Nawaz, M. Saqib ; Ventura, Sebastian ; Sun, Meng ; Zhou, Min ; Bitetta, Valerio ; Bordino, Ilaria ; Ferretti, Andrea ; Gullo, Francesco ; Ponti, Giovanni ; Severini, Lorenzo ; Ribeiro, Rita ; Gama, João ; Gavaldà , Ricard ; Cooper, Lee ; Ghazaleh, Naghmeh ; Richiardi, Jonas ; Roqueiro, Damian ; Saldana Miranda, Diego ; Sechidis, Konstantinos ; Graça, Guilherme
TÃtulo : Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part I Tipo de documento: documento electrónico Autores: Kamp, Michael, ; Koprinska, Irena, ; Bibal, Adrien, ; Bouadi, Tassadit, ; Frénay, Benoît, ; Galárraga, Luis, ; Oramas, José, ; Adilova, Linara, ; Krishnamurthy, Yamuna, ; Kang, Bo, ; Largeron, Christine, ; Lijffijt, Jefrey, ; Viard, Tiphaine, ; Welke, Pascal, ; Ruocco, Massimiliano, ; Aune, Erlend, ; Gallicchio, Claudio, ; Schiele, Gregor, ; Pernkopf, Franz, ; Blott, Michaela, ; Fröning, Holger, ; Schindler, Günther, ; Guidotti, Riccardo, ; Monreale, Anna, ; Rinzivillo, Salvatore, ; Biecek, Przemyslaw, ; Ntoutsi, Eirini, ; Pechenizkiy, Mykola, ; Rosenhahn, Bodo, ; Buckley, Christopher, ; Cialfi, Daniela, ; Lanillos, Pablo, ; Ramstead, Maxwell, ; Verbelen, Tim, ; Ferreira, Pedro M., ; Andresini, Giuseppina, ; Malerba, Donato, ; Medeiros, Ibéria, ; Fournier-Viger, Philippe, ; Nawaz, M. Saqib, ; Ventura, Sebastian, ; Sun, Meng, ; Zhou, Min, ; Bitetta, Valerio, ; Bordino, Ilaria, ; Ferretti, Andrea, ; Gullo, Francesco, ; Ponti, Giovanni, ; Severini, Lorenzo, ; Ribeiro, Rita, ; Gama, João, ; Gavaldà , Ricard, ; Cooper, Lee, ; Ghazaleh, Naghmeh, ; Richiardi, Jonas, ; Roqueiro, Damian, ; Saldana Miranda, Diego, ; Sechidis, Konstantinos, ; Graça, Guilherme, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XXV, 882 p. 282 ilustraciones, 236 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-93736-2 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia artificial IngenierÃa Informática Red de computadoras Ciencias sociales Informática IngenierÃa de software IngenierÃa Informática y Redes Aplicación informática en ciencias sociales y del comportamiento. Computadoras y Educación Matemáticas de la Computación Clasificación: 006.3 Resumen: Este conjunto de dos volúmenes constituye las actas arbitradas de los talleres que complementaron la 21.ª Conferencia Europea Conjunta sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD, celebrada en septiembre de 2021. Debido a la pandemia de COVID-19, la conferencia y los talleres se llevaron a cabo en lÃnea. . Los 104 artÃculos fueron revisados ​​minuciosamente y seleccionados entre 180 artÃculos presentados para los talleres. Este conjunto de dos volúmenes incluye las actas de los siguientes talleres: Taller sobre avances en aprendizaje automático interpretable e inteligencia artificial (AIMLAI 2021) Taller sobre aprendizaje paralelo, distribuido y federado (PDFL 2021) Taller sobre integración y minerÃa de gráficos (GEM 2021) Taller sobre aprendizaje automático para series temporales irregulares (ML4ITS 2021) Taller sobre IoT, Edge y dispositivos móviles para aprendizaje automático integrado (ITEM 2021) Taller sobre descubrimiento de conocimientos explicables en minerÃa de datos (XKDD 2021) Taller sobre sesgos y equidad en la IA (BIAS 2021) ) Taller sobre Taller sobre Inferencia Activa (IWAI 2021) Taller sobre Aprendizaje Automático para Ciberseguridad (MLCS 2021) Taller sobre Aprendizaje Automático en IngenierÃa de Software (MLiSE 2021) Taller sobre MinerÃa de Datos para aplicaciones financieras (MIDAS 2021) Sexto Taller sobre Ciencia de Datos para Social Good (SoGood 2021) Taller sobre aprendizaje automático para aplicaciones farmacéuticas y sanitarias (PharML 2021) Segundo taller sobre evaluación y diseño experimental en minerÃa de datos y aprendizaje automático (EDML 2020) Taller sobre aprendizaje automático para la gestión energética de edificios (MLBEM 2021). Nota de contenido: Advances in Interpretable Machine Learning and Artificial Intelligence -- Parallel, Distributed, and Federated Learning -- Graph Embedding and Mining -- Machine Learning for Irregular Time Series -- IoT, Edge, and Mobile for Embedded Machine Learning -- eXplainable Knowledge Discovery in Data Mining -- Bias and Fairness in AI -- International Workshop on Active Inference. . Tipo de medio : Computadora Summary : This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops: Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021) Workshop on Parallel, Distributed and Federated Learning (PDFL 2021) Workshop on Graph Embedding and Mining (GEM 2021) Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021) Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021) Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021) Workshop on Bias and Fairness in AI (BIAS 2021) Workshop on Workshop on Active Inference (IWAI 2021) Workshop on Machine Learning for Cybersecurity (MLCS 2021) Workshop on Machine Learning in Software Engineering (MLiSE 2021) Workshop on MIning Data for financial applications (MIDAS 2021) Sixth Workshop on Data Science for Social Good (SoGood 2021) Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021) Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020) Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021). Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part I [documento electrónico] / Kamp, Michael, ; Koprinska, Irena, ; Bibal, Adrien, ; Bouadi, Tassadit, ; Frénay, Benoît, ; Galárraga, Luis, ; Oramas, José, ; Adilova, Linara, ; Krishnamurthy, Yamuna, ; Kang, Bo, ; Largeron, Christine, ; Lijffijt, Jefrey, ; Viard, Tiphaine, ; Welke, Pascal, ; Ruocco, Massimiliano, ; Aune, Erlend, ; Gallicchio, Claudio, ; Schiele, Gregor, ; Pernkopf, Franz, ; Blott, Michaela, ; Fröning, Holger, ; Schindler, Günther, ; Guidotti, Riccardo, ; Monreale, Anna, ; Rinzivillo, Salvatore, ; Biecek, Przemyslaw, ; Ntoutsi, Eirini, ; Pechenizkiy, Mykola, ; Rosenhahn, Bodo, ; Buckley, Christopher, ; Cialfi, Daniela, ; Lanillos, Pablo, ; Ramstead, Maxwell, ; Verbelen, Tim, ; Ferreira, Pedro M., ; Andresini, Giuseppina, ; Malerba, Donato, ; Medeiros, Ibéria, ; Fournier-Viger, Philippe, ; Nawaz, M. Saqib, ; Ventura, Sebastian, ; Sun, Meng, ; Zhou, Min, ; Bitetta, Valerio, ; Bordino, Ilaria, ; Ferretti, Andrea, ; Gullo, Francesco, ; Ponti, Giovanni, ; Severini, Lorenzo, ; Ribeiro, Rita, ; Gama, João, ; Gavaldà , Ricard, ; Cooper, Lee, ; Ghazaleh, Naghmeh, ; Richiardi, Jonas, ; Roqueiro, Damian, ; Saldana Miranda, Diego, ; Sechidis, Konstantinos, ; Graça, Guilherme, . - 1 ed. . - [s.l.] : Springer, 2021 . - XXV, 882 p. 282 ilustraciones, 236 ilustraciones en color.
ISBN : 978-3-030-93736-2
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia artificial IngenierÃa Informática Red de computadoras Ciencias sociales Informática IngenierÃa de software IngenierÃa Informática y Redes Aplicación informática en ciencias sociales y del comportamiento. Computadoras y Educación Matemáticas de la Computación Clasificación: 006.3 Resumen: Este conjunto de dos volúmenes constituye las actas arbitradas de los talleres que complementaron la 21.ª Conferencia Europea Conjunta sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD, celebrada en septiembre de 2021. Debido a la pandemia de COVID-19, la conferencia y los talleres se llevaron a cabo en lÃnea. . Los 104 artÃculos fueron revisados ​​minuciosamente y seleccionados entre 180 artÃculos presentados para los talleres. Este conjunto de dos volúmenes incluye las actas de los siguientes talleres: Taller sobre avances en aprendizaje automático interpretable e inteligencia artificial (AIMLAI 2021) Taller sobre aprendizaje paralelo, distribuido y federado (PDFL 2021) Taller sobre integración y minerÃa de gráficos (GEM 2021) Taller sobre aprendizaje automático para series temporales irregulares (ML4ITS 2021) Taller sobre IoT, Edge y dispositivos móviles para aprendizaje automático integrado (ITEM 2021) Taller sobre descubrimiento de conocimientos explicables en minerÃa de datos (XKDD 2021) Taller sobre sesgos y equidad en la IA (BIAS 2021) ) Taller sobre Taller sobre Inferencia Activa (IWAI 2021) Taller sobre Aprendizaje Automático para Ciberseguridad (MLCS 2021) Taller sobre Aprendizaje Automático en IngenierÃa de Software (MLiSE 2021) Taller sobre MinerÃa de Datos para aplicaciones financieras (MIDAS 2021) Sexto Taller sobre Ciencia de Datos para Social Good (SoGood 2021) Taller sobre aprendizaje automático para aplicaciones farmacéuticas y sanitarias (PharML 2021) Segundo taller sobre evaluación y diseño experimental en minerÃa de datos y aprendizaje automático (EDML 2020) Taller sobre aprendizaje automático para la gestión energética de edificios (MLBEM 2021). Nota de contenido: Advances in Interpretable Machine Learning and Artificial Intelligence -- Parallel, Distributed, and Federated Learning -- Graph Embedding and Mining -- Machine Learning for Irregular Time Series -- IoT, Edge, and Mobile for Embedded Machine Learning -- eXplainable Knowledge Discovery in Data Mining -- Bias and Fairness in AI -- International Workshop on Active Inference. . Tipo de medio : Computadora Summary : This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops: Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021) Workshop on Parallel, Distributed and Federated Learning (PDFL 2021) Workshop on Graph Embedding and Mining (GEM 2021) Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021) Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021) Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021) Workshop on Bias and Fairness in AI (BIAS 2021) Workshop on Workshop on Active Inference (IWAI 2021) Workshop on Machine Learning for Cybersecurity (MLCS 2021) Workshop on Machine Learning in Software Engineering (MLiSE 2021) Workshop on MIning Data for financial applications (MIDAS 2021) Sixth Workshop on Data Science for Social Good (SoGood 2021) Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021) Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020) Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021). Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Machine Learning and Principles and Practice of Knowledge Discovery in Databases / Kamp, Michael ; Koprinska, Irena ; Bibal, Adrien ; Bouadi, Tassadit ; Frénay, Benoît ; Galárraga, Luis ; Oramas, José ; Adilova, Linara ; Krishnamurthy, Yamuna ; Kang, Bo ; Largeron, Christine ; Lijffijt, Jefrey ; Viard, Tiphaine ; Welke, Pascal ; Ruocco, Massimiliano ; Aune, Erlend ; Gallicchio, Claudio ; Schiele, Gregor ; Pernkopf, Franz ; Blott, Michaela ; Fröning, Holger ; Schindler, Günther ; Guidotti, Riccardo ; Monreale, Anna ; Rinzivillo, Salvatore ; Biecek, Przemyslaw ; Ntoutsi, Eirini ; Pechenizkiy, Mykola ; Rosenhahn, Bodo ; Buckley, Christopher ; Cialfi, Daniela ; Lanillos, Pablo ; Ramstead, Maxwell ; Verbelen, Tim ; Ferreira, Pedro M. ; Andresini, Giuseppina ; Malerba, Donato ; Medeiros, Ibéria ; Fournier-Viger, Philippe ; Nawaz, M. Saqib ; Ventura, Sebastian ; Sun, Meng ; Zhou, Min ; Bitetta, Valerio ; Bordino, Ilaria ; Ferretti, Andrea ; Gullo, Francesco ; Ponti, Giovanni ; Severini, Lorenzo ; Ribeiro, Rita ; Gama, João ; Gavaldà , Ricard ; Cooper, Lee ; Ghazaleh, Naghmeh ; Richiardi, Jonas ; Roqueiro, Damian ; Saldana Miranda, Diego ; Sechidis, Konstantinos ; Graça, Guilherme
TÃtulo : Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part II Tipo de documento: documento electrónico Autores: Kamp, Michael, ; Koprinska, Irena, ; Bibal, Adrien, ; Bouadi, Tassadit, ; Frénay, Benoît, ; Galárraga, Luis, ; Oramas, José, ; Adilova, Linara, ; Krishnamurthy, Yamuna, ; Kang, Bo, ; Largeron, Christine, ; Lijffijt, Jefrey, ; Viard, Tiphaine, ; Welke, Pascal, ; Ruocco, Massimiliano, ; Aune, Erlend, ; Gallicchio, Claudio, ; Schiele, Gregor, ; Pernkopf, Franz, ; Blott, Michaela, ; Fröning, Holger, ; Schindler, Günther, ; Guidotti, Riccardo, ; Monreale, Anna, ; Rinzivillo, Salvatore, ; Biecek, Przemyslaw, ; Ntoutsi, Eirini, ; Pechenizkiy, Mykola, ; Rosenhahn, Bodo, ; Buckley, Christopher, ; Cialfi, Daniela, ; Lanillos, Pablo, ; Ramstead, Maxwell, ; Verbelen, Tim, ; Ferreira, Pedro M., ; Andresini, Giuseppina, ; Malerba, Donato, ; Medeiros, Ibéria, ; Fournier-Viger, Philippe, ; Nawaz, M. Saqib, ; Ventura, Sebastian, ; Sun, Meng, ; Zhou, Min, ; Bitetta, Valerio, ; Bordino, Ilaria, ; Ferretti, Andrea, ; Gullo, Francesco, ; Ponti, Giovanni, ; Severini, Lorenzo, ; Ribeiro, Rita, ; Gama, João, ; Gavaldà , Ricard, ; Cooper, Lee, ; Ghazaleh, Naghmeh, ; Richiardi, Jonas, ; Roqueiro, Damian, ; Saldana Miranda, Diego, ; Sechidis, Konstantinos, ; Graça, Guilherme, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2021 Número de páginas: XXVI, 584 p. 156 ilustraciones, 135 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-93733-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia artificial IngenierÃa Informática Red de computadoras Ciencias sociales Ordenadores Procesamiento de imágenes Visión por computador IngenierÃa Informática y Redes Aplicación informática en ciencias sociales y del comportamiento. Entornos informáticos Imágenes por computadora visión reconocimiento de patrones y gráficos Clasificación: 006.3 Resumen: Este conjunto de dos volúmenes constituye las actas arbitradas de los talleres que complementaron la 21.ª Conferencia Europea Conjunta sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD, celebrada en septiembre de 2021. Debido a la pandemia de COVID-19, la conferencia y los talleres se llevaron a cabo en lÃnea. . Los 104 artÃculos fueron revisados ​​minuciosamente y seleccionados entre 180 artÃculos presentados para los talleres. Este conjunto de dos volúmenes incluye las actas de los siguientes talleres: Taller sobre avances en aprendizaje automático interpretable e inteligencia artificial (AIMLAI 2021) Taller sobre aprendizaje paralelo, distribuido y federado (PDFL 2021) Taller sobre integración y minerÃa de gráficos (GEM 2021) Taller sobre aprendizaje automático para series temporales irregulares (ML4ITS 2021) Taller sobre IoT, Edge y dispositivos móviles para aprendizaje automático integrado (ITEM 2021) Taller sobre descubrimiento de conocimientos explicables en minerÃa de datos (XKDD 2021) Taller sobre sesgos y equidad en la IA (BIAS 2021) ) Taller sobre Taller sobre Inferencia Activa (IWAI 2021) Taller sobre Aprendizaje Automático para Ciberseguridad (MLCS 2021) Taller sobre Aprendizaje Automático en IngenierÃa de Software (MLiSE 2021) Taller sobre MinerÃa de Datos para aplicaciones financieras (MIDAS 2021) Sexto Taller sobre Ciencia de Datos para Social Good (SoGood 2021) Taller sobre aprendizaje automático para aplicaciones farmacéuticas y sanitarias (PharML 2021) Segundo taller sobre evaluación y diseño experimental en minerÃa de datos y aprendizaje automático (EDML 2020) Taller sobre aprendizaje automático para la gestión energética de edificios (MLBEM 2021). Nota de contenido: Machine Learning for CyberSecurity -- Workshop on Machine Learning in Softtware Engineering -- MIning DAta for financial applicationS -- Sixth Workshop on Data Science for Social Good (SoGood 2021) -- Machine Learning for Pharma and Healthcare Applications -- Machine Learning for Buildings Energy Management. Tipo de medio : Computadora Summary : This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops: Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021) Workshop on Parallel, Distributed and Federated Learning (PDFL 2021) Workshop on Graph Embedding and Mining (GEM 2021) Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021) Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021) Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021) Workshop on Bias and Fairness in AI (BIAS 2021) Workshop on Workshop on Active Inference (IWAI 2021) Workshop on Machine Learning for Cybersecurity (MLCS 2021) Workshop on Machine Learning in Software Engineering (MLiSE 2021) Workshop on MIning Data for financial applications (MIDAS 2021) Sixth Workshop on Data Science for Social Good (SoGood 2021) Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021) Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020) Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021). Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part II [documento electrónico] / Kamp, Michael, ; Koprinska, Irena, ; Bibal, Adrien, ; Bouadi, Tassadit, ; Frénay, Benoît, ; Galárraga, Luis, ; Oramas, José, ; Adilova, Linara, ; Krishnamurthy, Yamuna, ; Kang, Bo, ; Largeron, Christine, ; Lijffijt, Jefrey, ; Viard, Tiphaine, ; Welke, Pascal, ; Ruocco, Massimiliano, ; Aune, Erlend, ; Gallicchio, Claudio, ; Schiele, Gregor, ; Pernkopf, Franz, ; Blott, Michaela, ; Fröning, Holger, ; Schindler, Günther, ; Guidotti, Riccardo, ; Monreale, Anna, ; Rinzivillo, Salvatore, ; Biecek, Przemyslaw, ; Ntoutsi, Eirini, ; Pechenizkiy, Mykola, ; Rosenhahn, Bodo, ; Buckley, Christopher, ; Cialfi, Daniela, ; Lanillos, Pablo, ; Ramstead, Maxwell, ; Verbelen, Tim, ; Ferreira, Pedro M., ; Andresini, Giuseppina, ; Malerba, Donato, ; Medeiros, Ibéria, ; Fournier-Viger, Philippe, ; Nawaz, M. Saqib, ; Ventura, Sebastian, ; Sun, Meng, ; Zhou, Min, ; Bitetta, Valerio, ; Bordino, Ilaria, ; Ferretti, Andrea, ; Gullo, Francesco, ; Ponti, Giovanni, ; Severini, Lorenzo, ; Ribeiro, Rita, ; Gama, João, ; Gavaldà , Ricard, ; Cooper, Lee, ; Ghazaleh, Naghmeh, ; Richiardi, Jonas, ; Roqueiro, Damian, ; Saldana Miranda, Diego, ; Sechidis, Konstantinos, ; Graça, Guilherme, . - 1 ed. . - [s.l.] : Springer, 2021 . - XXVI, 584 p. 156 ilustraciones, 135 ilustraciones en color.
ISBN : 978-3-030-93733-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia artificial IngenierÃa Informática Red de computadoras Ciencias sociales Ordenadores Procesamiento de imágenes Visión por computador IngenierÃa Informática y Redes Aplicación informática en ciencias sociales y del comportamiento. Entornos informáticos Imágenes por computadora visión reconocimiento de patrones y gráficos Clasificación: 006.3 Resumen: Este conjunto de dos volúmenes constituye las actas arbitradas de los talleres que complementaron la 21.ª Conferencia Europea Conjunta sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD, celebrada en septiembre de 2021. Debido a la pandemia de COVID-19, la conferencia y los talleres se llevaron a cabo en lÃnea. . Los 104 artÃculos fueron revisados ​​minuciosamente y seleccionados entre 180 artÃculos presentados para los talleres. Este conjunto de dos volúmenes incluye las actas de los siguientes talleres: Taller sobre avances en aprendizaje automático interpretable e inteligencia artificial (AIMLAI 2021) Taller sobre aprendizaje paralelo, distribuido y federado (PDFL 2021) Taller sobre integración y minerÃa de gráficos (GEM 2021) Taller sobre aprendizaje automático para series temporales irregulares (ML4ITS 2021) Taller sobre IoT, Edge y dispositivos móviles para aprendizaje automático integrado (ITEM 2021) Taller sobre descubrimiento de conocimientos explicables en minerÃa de datos (XKDD 2021) Taller sobre sesgos y equidad en la IA (BIAS 2021) ) Taller sobre Taller sobre Inferencia Activa (IWAI 2021) Taller sobre Aprendizaje Automático para Ciberseguridad (MLCS 2021) Taller sobre Aprendizaje Automático en IngenierÃa de Software (MLiSE 2021) Taller sobre MinerÃa de Datos para aplicaciones financieras (MIDAS 2021) Sexto Taller sobre Ciencia de Datos para Social Good (SoGood 2021) Taller sobre aprendizaje automático para aplicaciones farmacéuticas y sanitarias (PharML 2021) Segundo taller sobre evaluación y diseño experimental en minerÃa de datos y aprendizaje automático (EDML 2020) Taller sobre aprendizaje automático para la gestión energética de edificios (MLBEM 2021). Nota de contenido: Machine Learning for CyberSecurity -- Workshop on Machine Learning in Softtware Engineering -- MIning DAta for financial applicationS -- Sixth Workshop on Data Science for Social Good (SoGood 2021) -- Machine Learning for Pharma and Healthcare Applications -- Machine Learning for Buildings Energy Management. Tipo de medio : Computadora Summary : This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops: Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021) Workshop on Parallel, Distributed and Federated Learning (PDFL 2021) Workshop on Graph Embedding and Mining (GEM 2021) Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021) Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021) Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021) Workshop on Bias and Fairness in AI (BIAS 2021) Workshop on Workshop on Active Inference (IWAI 2021) Workshop on Machine Learning for Cybersecurity (MLCS 2021) Workshop on Machine Learning in Software Engineering (MLiSE 2021) Workshop on MIning Data for financial applications (MIDAS 2021) Sixth Workshop on Data Science for Social Good (SoGood 2021) Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021) Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020) Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021). Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]
TÃtulo : Supervised Descriptive Pattern Mining Tipo de documento: documento electrónico Autores: Ventura, Sebastian, ; Luna, José MarÃa, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2018 Número de páginas: XI, 185 p. 42 ilustraciones ISBN/ISSN/DL: 978-3-319-98140-6 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Procesamiento de datos Inteligencia artificial Sistemas de reconocimiento de patrones MinerÃa de datos y descubrimiento de conocimientos Reconocimiento de patrones automatizado Clasificación: 6.312 Resumen: Este libro proporciona una visión general y comprensible de la minerÃa de patrones descriptivos supervisados, considerando algoritmos clásicos y aquellos basados ​​en heurÃsticas. Proporciona algunas definiciones formales y una idea general sobre patrones, minerÃa de patrones, la utilidad de los patrones en el proceso de descubrimiento de conocimiento, asà como un breve resumen de las tareas relacionadas con la minerÃa de patrones descriptiva supervisada. También incluye una descripción detallada de las tareas habitualmente agrupadas bajo el término minerÃa de patrones descriptivos supervisados: descubrimiento de subgrupos, conjuntos de contraste y patrones emergentes. Además, este libro incluye dos tareas, reglas de asociación de clases y modelos excepcionales, que también se consideran dentro de este campo. Una caracterÃstica importante de este libro es que proporciona una descripción general (definiciones formales y algoritmos) de todas las tareas incluidas bajo el término minerÃa de patrones descriptivos supervisados. Considera el análisis de diferentes algoritmos ya sea basados ​​en heurÃsticas o basados ​​en metodologÃas de búsqueda exhaustiva para cualquiera de estas tareas. Este libro también ilustra la importancia de estas técnicas en diferentes campos y se describe un conjunto de aplicaciones del mundo real. Por último, pero no menos importante, también se consideran y analizan algunas tareas relacionadas. El objetivo final de este libro es proporcionar una revisión general del campo de la minerÃa de patrones descriptivos supervisados, describiendo sus tareas, sus algoritmos, sus aplicaciones y tareas relacionadas (aquellas que comparten algunas caracterÃsticas comunes). Este libro está dirigido a desarrolladores, ingenieros e informáticos que buscan aplicar algoritmos clásicos y heurÃsticos para resolver diferentes tipos de problemas de minerÃa de patrones y aplicarlos a problemas reales. Los estudiantes e investigadores que trabajan en este campo pueden utilizar este libro completo (que incluye sus métodos y herramientas) como libro de texto secundario. Nota de contenido: 1 Introduction to Supervised Descriptive Pattern Mining -- 2 Contrast Sets -- 3 Emerging Patterns -- 4 Subgroup Discovery -- 5 Class Association Rules -- 6 Exceptional Models -- 7 Other Forms of Supervised Descriptive Pattern Mining -- 8 Successful Applications. Tipo de medio : Computadora Summary : This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Supervised Descriptive Pattern Mining [documento electrónico] / Ventura, Sebastian, ; Luna, José MarÃa, . - 1 ed. . - [s.l.] : Springer, 2018 . - XI, 185 p. 42 ilustraciones.
ISBN : 978-3-319-98140-6
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Procesamiento de datos Inteligencia artificial Sistemas de reconocimiento de patrones MinerÃa de datos y descubrimiento de conocimientos Reconocimiento de patrones automatizado Clasificación: 6.312 Resumen: Este libro proporciona una visión general y comprensible de la minerÃa de patrones descriptivos supervisados, considerando algoritmos clásicos y aquellos basados ​​en heurÃsticas. Proporciona algunas definiciones formales y una idea general sobre patrones, minerÃa de patrones, la utilidad de los patrones en el proceso de descubrimiento de conocimiento, asà como un breve resumen de las tareas relacionadas con la minerÃa de patrones descriptiva supervisada. También incluye una descripción detallada de las tareas habitualmente agrupadas bajo el término minerÃa de patrones descriptivos supervisados: descubrimiento de subgrupos, conjuntos de contraste y patrones emergentes. Además, este libro incluye dos tareas, reglas de asociación de clases y modelos excepcionales, que también se consideran dentro de este campo. Una caracterÃstica importante de este libro es que proporciona una descripción general (definiciones formales y algoritmos) de todas las tareas incluidas bajo el término minerÃa de patrones descriptivos supervisados. Considera el análisis de diferentes algoritmos ya sea basados ​​en heurÃsticas o basados ​​en metodologÃas de búsqueda exhaustiva para cualquiera de estas tareas. Este libro también ilustra la importancia de estas técnicas en diferentes campos y se describe un conjunto de aplicaciones del mundo real. Por último, pero no menos importante, también se consideran y analizan algunas tareas relacionadas. El objetivo final de este libro es proporcionar una revisión general del campo de la minerÃa de patrones descriptivos supervisados, describiendo sus tareas, sus algoritmos, sus aplicaciones y tareas relacionadas (aquellas que comparten algunas caracterÃsticas comunes). Este libro está dirigido a desarrolladores, ingenieros e informáticos que buscan aplicar algoritmos clásicos y heurÃsticos para resolver diferentes tipos de problemas de minerÃa de patrones y aplicarlos a problemas reales. Los estudiantes e investigadores que trabajan en este campo pueden utilizar este libro completo (que incluye sus métodos y herramientas) como libro de texto secundario. Nota de contenido: 1 Introduction to Supervised Descriptive Pattern Mining -- 2 Contrast Sets -- 3 Emerging Patterns -- 4 Subgroup Discovery -- 5 Class Association Rules -- 6 Exceptional Models -- 7 Other Forms of Supervised Descriptive Pattern Mining -- 8 Successful Applications. Tipo de medio : Computadora Summary : This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]