Información del autor
Autor Ingalhalikar, Madhura |
Documentos disponibles escritos por este autor (1)
Crear una solicitud de compra Refinar búsqueda
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology / Kia, Seyed Mostafa ; Mohy-ud-Din, Hassan ; Abdulkadir, Ahmed ; Bass, Cher ; Habes, Mohamad ; Rondina, Jane Maryam ; Tax, Chantal ; Wang, Hongzhi ; Wolfers, Thomas ; Rathore, Saima ; Ingalhalikar, Madhura
TÃtulo : Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology : Third International Workshop, MLCN 2020, and Second International Workshop, RNO-AI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings / Tipo de documento: documento electrónico Autores: Kia, Seyed Mostafa, ; Mohy-ud-Din, Hassan, ; Abdulkadir, Ahmed, ; Bass, Cher, ; Habes, Mohamad, ; Rondina, Jane Maryam, ; Tax, Chantal, ; Wang, Hongzhi, ; Wolfers, Thomas, ; Rathore, Saima, ; Ingalhalikar, Madhura, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2020 Número de páginas: XVIII, 305 p. 8 ilustraciones ISBN/ISSN/DL: 978-3-030-66843-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Visión por computador Clasificación: 006.37 Resumen: Este libro constituye las actas arbitradas del Tercer Taller Internacional sobre Aprendizaje Automático en Neuroimagen ClÃnica, MLCN 2020, y el Segundo Taller Internacional sobre Radiogenómica en NeurooncologÃa, RNO-AI 2020, celebrado en conjunto con MICCAI 2020, en Lima, Perú. en octubre de 2020.* Para MLCN 2020, se aceptaron para publicación 18 artÃculos de 28 presentados. Los artÃculos aceptados presentan contribuciones novedosas tanto en el desarrollo de nuevos métodos de aprendizaje automático como en aplicaciones de métodos existentes para resolver problemas desafiantes en neuroimagen clÃnica. Para RNO-AI 2020, se aceptaron las 8 presentaciones para su publicación. Se centran en abordar los problemas de aplicar el aprendizaje automático a conjuntos de datos de neuroimagen clÃnica grandes y multisitio. El taller tenÃa como objetivo reunir a expertos tanto en aprendizaje automático como en neuroimagen clÃnica para discutir y, con suerte, superar los desafÃos existentes del aprendizaje automático aplicado en la neurociencia clÃnica. *Los talleres se realizaron de manera virtual debido a la pandemia de COVID-19. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2020, and the Second International Workshop on Radiogenomics in Neuro-oncology, RNO-AI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020.* For MLCN 2020, 18 papers out of 28 submissions were accepted for publication. The accepted papers present novel contributions in both developing new machine learning methods and applications of existing methods to solve challenging problems in clinical neuroimaging. For RNO-AI 2020, all 8 submissions were accepted for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience. *The workshops were held virtually due to the COVID-19 pandemic. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology : Third International Workshop, MLCN 2020, and Second International Workshop, RNO-AI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings / [documento electrónico] / Kia, Seyed Mostafa, ; Mohy-ud-Din, Hassan, ; Abdulkadir, Ahmed, ; Bass, Cher, ; Habes, Mohamad, ; Rondina, Jane Maryam, ; Tax, Chantal, ; Wang, Hongzhi, ; Wolfers, Thomas, ; Rathore, Saima, ; Ingalhalikar, Madhura, . - 1 ed. . - [s.l.] : Springer, 2020 . - XVIII, 305 p. 8 ilustraciones.
ISBN : 978-3-030-66843-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Visión por computador Clasificación: 006.37 Resumen: Este libro constituye las actas arbitradas del Tercer Taller Internacional sobre Aprendizaje Automático en Neuroimagen ClÃnica, MLCN 2020, y el Segundo Taller Internacional sobre Radiogenómica en NeurooncologÃa, RNO-AI 2020, celebrado en conjunto con MICCAI 2020, en Lima, Perú. en octubre de 2020.* Para MLCN 2020, se aceptaron para publicación 18 artÃculos de 28 presentados. Los artÃculos aceptados presentan contribuciones novedosas tanto en el desarrollo de nuevos métodos de aprendizaje automático como en aplicaciones de métodos existentes para resolver problemas desafiantes en neuroimagen clÃnica. Para RNO-AI 2020, se aceptaron las 8 presentaciones para su publicación. Se centran en abordar los problemas de aplicar el aprendizaje automático a conjuntos de datos de neuroimagen clÃnica grandes y multisitio. El taller tenÃa como objetivo reunir a expertos tanto en aprendizaje automático como en neuroimagen clÃnica para discutir y, con suerte, superar los desafÃos existentes del aprendizaje automático aplicado en la neurociencia clÃnica. *Los talleres se realizaron de manera virtual debido a la pandemia de COVID-19. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2020, and the Second International Workshop on Radiogenomics in Neuro-oncology, RNO-AI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020.* For MLCN 2020, 18 papers out of 28 submissions were accepted for publication. The accepted papers present novel contributions in both developing new machine learning methods and applications of existing methods to solve challenging problems in clinical neuroimaging. For RNO-AI 2020, all 8 submissions were accepted for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience. *The workshops were held virtually due to the COVID-19 pandemic. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]