| Título : |
Machine Learning for Medical Image Reconstruction : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings |
| Tipo de documento: |
documento electrónico |
| Autores: |
Knoll, Florian, ; Maier, Andreas, ; Rueckert, Daniel, ; Ye, Jong Chul, |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2019 |
| Número de páginas: |
IX, 266 p. 128 ilustraciones, 94 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-3-030-33843-5 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Inteligencia artificial Ciencias sociales Bioinformática Visión por computador Informática Médica Computadoras y Educación Aplicación informática en ciencias sociales y del comportamiento Biología Computacional y de Sistemas Informática de la Salud |
| Índice Dewey: |
006.3 Inteligencia artificial |
| Resumen: |
Este libro constituye las actas arbitradas del Segundo Taller Internacional sobre Aprendizaje Automático para la Reconstrucción Médica, MLMIR 2019, celebrado junto con MICCAI 2019, en Shenzhen, China, en octubre de 2019. Los 24 artículos completos presentados fueron cuidadosamente revisados y seleccionados entre 32 presentaciones. . Los artículos están organizados en las siguientes secciones temáticas: aprendizaje profundo para imágenes por resonancia magnética; aprendizaje profundo para tomografía computarizada; y aprendizaje profundo para la reconstrucción general de imágenes. |
| Nota de contenido: |
Deep Learning for Magnetic Resonance Imaging -- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging -- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network -- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network -- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network -- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator -- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions -- Modeling and Analysis Brain Development via Discriminative Dictionary Learning -- Deep Learning for Computed Tomography -- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval -- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior -- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks -- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results -- Deep Learning for General Image Reconstruction -- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps -- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation -- Stain Style Transfer using Transitive Adversarial Networks -- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer -- Deep Learning based approach to quantification of PET tracer uptake in small tumors -- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction -- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data -- Neural Denoising of Ultra-Low Dose Mammography -- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging -- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy -- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis -- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Machine Learning for Medical Image Reconstruction : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings [documento electrónico] / Knoll, Florian, ; Maier, Andreas, ; Rueckert, Daniel, ; Ye, Jong Chul, . - 1 ed. . - [s.l.] : Springer, 2019 . - IX, 266 p. 128 ilustraciones, 94 ilustraciones en color. ISBN : 978-3-030-33843-5 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Inteligencia artificial Ciencias sociales Bioinformática Visión por computador Informática Médica Computadoras y Educación Aplicación informática en ciencias sociales y del comportamiento Biología Computacional y de Sistemas Informática de la Salud |
| Índice Dewey: |
006.3 Inteligencia artificial |
| Resumen: |
Este libro constituye las actas arbitradas del Segundo Taller Internacional sobre Aprendizaje Automático para la Reconstrucción Médica, MLMIR 2019, celebrado junto con MICCAI 2019, en Shenzhen, China, en octubre de 2019. Los 24 artículos completos presentados fueron cuidadosamente revisados y seleccionados entre 32 presentaciones. . Los artículos están organizados en las siguientes secciones temáticas: aprendizaje profundo para imágenes por resonancia magnética; aprendizaje profundo para tomografía computarizada; y aprendizaje profundo para la reconstrucción general de imágenes. |
| Nota de contenido: |
Deep Learning for Magnetic Resonance Imaging -- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging -- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network -- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network -- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network -- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator -- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions -- Modeling and Analysis Brain Development via Discriminative Dictionary Learning -- Deep Learning for Computed Tomography -- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval -- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior -- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks -- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results -- Deep Learning for General Image Reconstruction -- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps -- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation -- Stain Style Transfer using Transitive Adversarial Networks -- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer -- Deep Learning based approach to quantification of PET tracer uptake in small tumors -- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction -- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data -- Neural Denoising of Ultra-Low Dose Mammography -- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging -- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy -- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis -- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |