Autor Todorovski, Ljupčo
|
|
Documentos disponibles escritos por este autor (2)
Hacer una sugerencia Refinar búsquedaEuropean Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I / Ceci, Michelangelo ; Hollmén, Jaakko ; Todorovski, Ljupčo ; Vens, Celine ; Džeroski, Sašo
![]()
Título : European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I Tipo de documento: documento electrónico Autores: Ceci, Michelangelo, ; Hollmén, Jaakko, ; Todorovski, Ljupčo, ; Vens, Celine, ; Džeroski, Sašo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2017 Número de páginas: LXIII, 852 p. 245 ilustraciones ISBN/ISSN/DL: 978-3-319-71249-9 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Procesamiento de datos Inteligencia artificial Visión por computador Software de la aplicacion Protección de datos Ordenadores Minería de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Seguridad de datos e información Entornos informáticos Índice Dewey: 6.312 Resumen: Las actas de tres volúmenes LNAI 10534 – 10536 constituyen las actas arbitradas de la Conferencia Europea sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD 2017, celebrada en Skopje, Macedonia, en septiembre de 2017. El total de 101 artículos regulares presentados en la parte I y la parte II fue cuidadosamente revisada y seleccionada entre 364 presentaciones; Hay 47 artículos en la sección de demostración, néctar y ciencia de datos aplicada. Las contribuciones se organizaron en secciones temáticas denominadas de la siguiente manera: Parte I: detección de anomalías; visión por computador; conjuntos y metaaprendizaje; selección y extracción de características; métodos del núcleo; aprendizaje y optimización, factorización matricial y tensorial; redes y gráficos; Redes neuronales y aprendizaje profundo. Parte II: minería de patrones y secuencias; privacidad y seguridad; modelos y métodos probabilísticos; recomendación; regresión; aprendizaje reforzado; descubrimiento de subgrupos; series de tiempo y flujos; transferencia y aprendizaje multitarea; Aprendizaje no supervisado y semisupervisado. Parte III: pista de ciencia de datos aplicada; pista de néctar; y pista de demostración. Nota de contenido: Anomaly Detection -- Concentration Free Outlier Detection -- Efficient top rank optimization with gradient boosting for supervised anomaly detection -- Robust, Deep and Inductive Anomaly Detection -- Sentiment Informed Cyberbullying Detection in Social Media -- zooRank: Ranking Suspicious Activities in Time-Evolving Tensors -- Computer Vision -- Alternative Semantic Representations for Zero-Shot Human Action Recognition -- Early Active Learning with Pairwise Constraint for Person Re-identification -- Guiding InfoGAN with Semi-Supervision -- Scatteract: Automated extraction of data from scatter plots -- Unsupervised Diverse Colorization via Generative Adversarial Networks -- Ensembles and Meta Learning -- Dynamic Ensemble Selection with Probabilistic Classifier Chains -- Ensemble-Compression: A New Method for Parallel Training of Deep Neural Networks -- Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks -- Feature Selection and Extraction -- Deep Discrete Hashing with Self-supervised Labels -- Including multi-feature interactions and redundancy for feature ranking in mixed datasets -- Non-redundant Spectral Dimensionality Reduction -- Rethinking Unsupervised Feature Selection: From Pseudo Labels to Pseudo Must-links -- SetExpan: Corpus-based Set Expansion via Context Feature Selection and Rank Ensemble -- Kernel Methods -- Bayesian Nonlinear Support Vector Machines for Big Data -- Entropic Trace Estimation for Log Determinants -- Fair Kernel Learning -- GaKCo: a Fast Gapped k-mer string Kernel using Counting -- Graph Enhanced Memory Networks for Sentiment Analysis -- Kernel Sequential Monte Carlo -- Learning Lukasiewicz Logic Fragments by Quadratic Programming -- Nystrom sketching -- Learning and Optimization -- Crossprop: learning representations by stochastic meta-gradient descent in neural networks -- Distributed Stochastic Optimization of the Regularized Risk via Saddle-point Problem -- Speeding up Hyper-parameter Optimization by Extrapolation of Learning Curves using Previous Builds -- Matrix and Tensor Factorization -- Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation -- Content-Based Social Recommendation with Poisson Matrix Factorization -- C-SALT: Mining Class-Speci_c ALTerations in Boolean Matrix Factorization -- Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition -- Structurally Regularized Non-negative Tensor Factorization for Spatio-temporal Pattern Discoveries -- Networks and Graphs -- Attributed Graph Clustering with Unimodal Normalized Cut -- K-clique-graphs for Dense Subgraph Discovery -- Learning and Scaling Directed Networks via Graph Embedding -- Local Lanczos Spectral Approximation for Membership Identification -- Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms -- Survival Factorization for Topical Cascades on Diffusion Networks -- The network-untangling problem: From interactions to activity timelines.-TransT: Type-based Multiple Embedding Representations forKnowledge Graph Completion -- Neural Networks and Deep Learning -- A network Architecture for Multi-multi Instance Learning -- CON-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec -- Deep Over-sampling Framework for Classifying Imbalanced Data -- FCNNs: Fourier Convolutional Neural Networks -- Joint User Modeling across Aligned Heterogeneous Sites using Neural Networks -- Sequence Generation with Target Attention -- Wikipedia Vandal Early Detection: from User Behavior to User Embedding. . En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I [documento electrónico] / Ceci, Michelangelo, ; Hollmén, Jaakko, ; Todorovski, Ljupčo, ; Vens, Celine, ; Džeroski, Sašo, . - 1 ed. . - [s.l.] : Springer, 2017 . - LXIII, 852 p. 245 ilustraciones.
ISBN : 978-3-319-71249-9
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Procesamiento de datos Inteligencia artificial Visión por computador Software de la aplicacion Protección de datos Ordenadores Minería de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Seguridad de datos e información Entornos informáticos Índice Dewey: 6.312 Resumen: Las actas de tres volúmenes LNAI 10534 – 10536 constituyen las actas arbitradas de la Conferencia Europea sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD 2017, celebrada en Skopje, Macedonia, en septiembre de 2017. El total de 101 artículos regulares presentados en la parte I y la parte II fue cuidadosamente revisada y seleccionada entre 364 presentaciones; Hay 47 artículos en la sección de demostración, néctar y ciencia de datos aplicada. Las contribuciones se organizaron en secciones temáticas denominadas de la siguiente manera: Parte I: detección de anomalías; visión por computador; conjuntos y metaaprendizaje; selección y extracción de características; métodos del núcleo; aprendizaje y optimización, factorización matricial y tensorial; redes y gráficos; Redes neuronales y aprendizaje profundo. Parte II: minería de patrones y secuencias; privacidad y seguridad; modelos y métodos probabilísticos; recomendación; regresión; aprendizaje reforzado; descubrimiento de subgrupos; series de tiempo y flujos; transferencia y aprendizaje multitarea; Aprendizaje no supervisado y semisupervisado. Parte III: pista de ciencia de datos aplicada; pista de néctar; y pista de demostración. Nota de contenido: Anomaly Detection -- Concentration Free Outlier Detection -- Efficient top rank optimization with gradient boosting for supervised anomaly detection -- Robust, Deep and Inductive Anomaly Detection -- Sentiment Informed Cyberbullying Detection in Social Media -- zooRank: Ranking Suspicious Activities in Time-Evolving Tensors -- Computer Vision -- Alternative Semantic Representations for Zero-Shot Human Action Recognition -- Early Active Learning with Pairwise Constraint for Person Re-identification -- Guiding InfoGAN with Semi-Supervision -- Scatteract: Automated extraction of data from scatter plots -- Unsupervised Diverse Colorization via Generative Adversarial Networks -- Ensembles and Meta Learning -- Dynamic Ensemble Selection with Probabilistic Classifier Chains -- Ensemble-Compression: A New Method for Parallel Training of Deep Neural Networks -- Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks -- Feature Selection and Extraction -- Deep Discrete Hashing with Self-supervised Labels -- Including multi-feature interactions and redundancy for feature ranking in mixed datasets -- Non-redundant Spectral Dimensionality Reduction -- Rethinking Unsupervised Feature Selection: From Pseudo Labels to Pseudo Must-links -- SetExpan: Corpus-based Set Expansion via Context Feature Selection and Rank Ensemble -- Kernel Methods -- Bayesian Nonlinear Support Vector Machines for Big Data -- Entropic Trace Estimation for Log Determinants -- Fair Kernel Learning -- GaKCo: a Fast Gapped k-mer string Kernel using Counting -- Graph Enhanced Memory Networks for Sentiment Analysis -- Kernel Sequential Monte Carlo -- Learning Lukasiewicz Logic Fragments by Quadratic Programming -- Nystrom sketching -- Learning and Optimization -- Crossprop: learning representations by stochastic meta-gradient descent in neural networks -- Distributed Stochastic Optimization of the Regularized Risk via Saddle-point Problem -- Speeding up Hyper-parameter Optimization by Extrapolation of Learning Curves using Previous Builds -- Matrix and Tensor Factorization -- Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation -- Content-Based Social Recommendation with Poisson Matrix Factorization -- C-SALT: Mining Class-Speci_c ALTerations in Boolean Matrix Factorization -- Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition -- Structurally Regularized Non-negative Tensor Factorization for Spatio-temporal Pattern Discoveries -- Networks and Graphs -- Attributed Graph Clustering with Unimodal Normalized Cut -- K-clique-graphs for Dense Subgraph Discovery -- Learning and Scaling Directed Networks via Graph Embedding -- Local Lanczos Spectral Approximation for Membership Identification -- Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms -- Survival Factorization for Topical Cascades on Diffusion Networks -- The network-untangling problem: From interactions to activity timelines.-TransT: Type-based Multiple Embedding Representations forKnowledge Graph Completion -- Neural Networks and Deep Learning -- A network Architecture for Multi-multi Instance Learning -- CON-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec -- Deep Over-sampling Framework for Classifying Imbalanced Data -- FCNNs: Fourier Convolutional Neural Networks -- Joint User Modeling across Aligned Heterogeneous Sites using Neural Networks -- Sequence Generation with Target Attention -- Wikipedia Vandal Early Detection: from User Behavior to User Embedding. . En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II / Ceci, Michelangelo ; Hollmén, Jaakko ; Todorovski, Ljupčo ; Vens, Celine ; Džeroski, Sašo
![]()
Título : European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II Tipo de documento: documento electrónico Autores: Ceci, Michelangelo, ; Hollmén, Jaakko, ; Todorovski, Ljupčo, ; Vens, Celine, ; Džeroski, Sašo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2017 Número de páginas: XXXIII, 866 p. 213 ilustraciones ISBN/ISSN/DL: 978-3-319-71246-8 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Palabras clave: Procesamiento de datos Inteligencia artificial Visión por computador Software de la aplicacion Protección de datos Ordenadores Minería de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Seguridad de datos e información Entornos informáticos Índice Dewey: 6.312 Resumen: Las actas de tres volúmenes LNAI 10534 – 10536 constituyen las actas arbitradas de la Conferencia Europea sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD 2017, celebrada en Skopje, Macedonia, en septiembre de 2017. El total de 101 artículos regulares presentados en la parte I y la parte II fue cuidadosamente revisada y seleccionada entre 364 presentaciones; Hay 47 artículos en la sección de demostración, néctar y ciencia de datos aplicada. Las contribuciones se organizaron en secciones temáticas denominadas de la siguiente manera: Parte I: detección de anomalías; visión por computador; conjuntos y metaaprendizaje; selección y extracción de características; métodos del núcleo; aprendizaje y optimización, factorización matricial y tensorial; redes y gráficos; Redes neuronales y aprendizaje profundo. Parte II: minería de patrones y secuencias; privacidad y seguridad; modelos y métodos probabilísticos; recomendación; regresión; aprendizaje reforzado; descubrimiento de subgrupos; series de tiempo y flujos; transferencia y aprendizaje multitarea; Aprendizaje no supervisado y semisupervisado. Parte III: pista de ciencia de datos aplicada; pista de néctar; y pista de demostración. Nota de contenido: Pattern and Sequence Mining -- BeatLex: Summarizing and Forecasting Time Series with Patterns -- Behavioral Constraint Template-Based Sequence Classification -- Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space -- Subjectively Interesting Connecting Trees -- Privacy and Security -- Malware Detection by Analysing Encrypted Network Traffic with Neural Networks -- PEM: Practical Differentially Private System for Large-Scale Cross-Institutional Data Mining -- Probabilistic Models and Methods -- Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources -- Bayesian Inference for Least Squares Temporal Difference Regularization -- Discovery of Causal Models that Contain Latent Variables through Bayesian Scoring of Independence Constraints -- Labeled DBN learning with community structure knowledge -- Multi-view Generative Adversarial Networks -- Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models -- PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach -- Partial Device Fingerprints -- Robust Multi-view Topic Modeling by Incorporating Detecting Anomalies -- Recommendation -- A Regularization Method with Inference of Trust and Distrust in Recommender Systems -- A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations -- Perceiving the Next Choice with Comprehensive Transaction Embeddings for Online Recommendation -- Regression -- Adaptive Skip-Train Structured Regression for Temporal Networks -- ALADIN: A New Approach for Drug-Target Interaction Prediction -- Co-Regularised Support Vector Regression -- Online Regression with Controlled Label Noise Rate -- Reinforcement Learning -- Generalized Inverse Reinforcement Learning with Linearly Solvable MDP -- Max K-armed bandit: On the ExtremeHunter algorithm and beyond -- Variational Thompson Sampling for Relational Recurrent Bandits -- Subgroup Discovery -- Explaining Deviating Subsetsthrough Explanation Networks -- Flash points: Discovering exceptional pairwise behaviors in vote or rating data -- Time Series and Streams -- A Multiscale Bezier-Representation for Time Series that Supports Elastic Matching -- Arbitrated Ensemble for Time Series Forecasting -- Cost Sensitive Time-series Classification -- Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams -- Efficient Temporal Kernels between Feature Sets for Time Series Classification -- Forecasting and Granger modelling with non-linear dynamical dependencies -- Learning TSK Fuzzy Rules from Data Streams -- Non-Parametric Online AUC Maximization -- On-line Dynamic Time Warping for Streaming Time Series -- PowerCast: Mining and Forecasting Power Grid Sequences -- UAPD: Predicting Urban Anomalies from Spatial-Temporal Data -- Transfer and Multi-Task Learning -- A Novel Rating Pattern Transfer Model for Improving Non-Overlapping Cross-Domain Collaborative Filtering -- Distributed Multi-task Learning for SensorNetwork -- Learning task structure via sparsity grouped multitask learning -- Lifelong Learning with Gaussian Processes -- Personalized Tag Recommendation for Images Using Deep Transfer Learning -- Ranking based Multitask Learning of Scoring Functions -- Theoretical Analysis of Domain Adaptation with Optimal Transport -- TSP: Learning Task-Speci_c Pivots for Unsupervised Domain Adaptation -- Unsupervised and Semisupervised Learning -- k2-means for fast and accurate large scale clustering -- A Simple Exponential Family Framework for Zero-Shot Learning -- DeepCluster: A General Clustering Framework based on Deep Learning -- Multi-view Spectral Clustering on Conflicting Views -- Pivot-based Distributed K-Nearest Neighbor Mining. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II [documento electrónico] / Ceci, Michelangelo, ; Hollmén, Jaakko, ; Todorovski, Ljupčo, ; Vens, Celine, ; Džeroski, Sašo, . - 1 ed. . - [s.l.] : Springer, 2017 . - XXXIII, 866 p. 213 ilustraciones.
ISBN : 978-3-319-71246-8
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Palabras clave: Procesamiento de datos Inteligencia artificial Visión por computador Software de la aplicacion Protección de datos Ordenadores Minería de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Seguridad de datos e información Entornos informáticos Índice Dewey: 6.312 Resumen: Las actas de tres volúmenes LNAI 10534 – 10536 constituyen las actas arbitradas de la Conferencia Europea sobre Aprendizaje Automático y Descubrimiento de Conocimiento en Bases de Datos, ECML PKDD 2017, celebrada en Skopje, Macedonia, en septiembre de 2017. El total de 101 artículos regulares presentados en la parte I y la parte II fue cuidadosamente revisada y seleccionada entre 364 presentaciones; Hay 47 artículos en la sección de demostración, néctar y ciencia de datos aplicada. Las contribuciones se organizaron en secciones temáticas denominadas de la siguiente manera: Parte I: detección de anomalías; visión por computador; conjuntos y metaaprendizaje; selección y extracción de características; métodos del núcleo; aprendizaje y optimización, factorización matricial y tensorial; redes y gráficos; Redes neuronales y aprendizaje profundo. Parte II: minería de patrones y secuencias; privacidad y seguridad; modelos y métodos probabilísticos; recomendación; regresión; aprendizaje reforzado; descubrimiento de subgrupos; series de tiempo y flujos; transferencia y aprendizaje multitarea; Aprendizaje no supervisado y semisupervisado. Parte III: pista de ciencia de datos aplicada; pista de néctar; y pista de demostración. Nota de contenido: Pattern and Sequence Mining -- BeatLex: Summarizing and Forecasting Time Series with Patterns -- Behavioral Constraint Template-Based Sequence Classification -- Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space -- Subjectively Interesting Connecting Trees -- Privacy and Security -- Malware Detection by Analysing Encrypted Network Traffic with Neural Networks -- PEM: Practical Differentially Private System for Large-Scale Cross-Institutional Data Mining -- Probabilistic Models and Methods -- Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources -- Bayesian Inference for Least Squares Temporal Difference Regularization -- Discovery of Causal Models that Contain Latent Variables through Bayesian Scoring of Independence Constraints -- Labeled DBN learning with community structure knowledge -- Multi-view Generative Adversarial Networks -- Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models -- PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach -- Partial Device Fingerprints -- Robust Multi-view Topic Modeling by Incorporating Detecting Anomalies -- Recommendation -- A Regularization Method with Inference of Trust and Distrust in Recommender Systems -- A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations -- Perceiving the Next Choice with Comprehensive Transaction Embeddings for Online Recommendation -- Regression -- Adaptive Skip-Train Structured Regression for Temporal Networks -- ALADIN: A New Approach for Drug-Target Interaction Prediction -- Co-Regularised Support Vector Regression -- Online Regression with Controlled Label Noise Rate -- Reinforcement Learning -- Generalized Inverse Reinforcement Learning with Linearly Solvable MDP -- Max K-armed bandit: On the ExtremeHunter algorithm and beyond -- Variational Thompson Sampling for Relational Recurrent Bandits -- Subgroup Discovery -- Explaining Deviating Subsetsthrough Explanation Networks -- Flash points: Discovering exceptional pairwise behaviors in vote or rating data -- Time Series and Streams -- A Multiscale Bezier-Representation for Time Series that Supports Elastic Matching -- Arbitrated Ensemble for Time Series Forecasting -- Cost Sensitive Time-series Classification -- Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams -- Efficient Temporal Kernels between Feature Sets for Time Series Classification -- Forecasting and Granger modelling with non-linear dynamical dependencies -- Learning TSK Fuzzy Rules from Data Streams -- Non-Parametric Online AUC Maximization -- On-line Dynamic Time Warping for Streaming Time Series -- PowerCast: Mining and Forecasting Power Grid Sequences -- UAPD: Predicting Urban Anomalies from Spatial-Temporal Data -- Transfer and Multi-Task Learning -- A Novel Rating Pattern Transfer Model for Improving Non-Overlapping Cross-Domain Collaborative Filtering -- Distributed Multi-task Learning for SensorNetwork -- Learning task structure via sparsity grouped multitask learning -- Lifelong Learning with Gaussian Processes -- Personalized Tag Recommendation for Images Using Deep Transfer Learning -- Ranking based Multitask Learning of Scoring Functions -- Theoretical Analysis of Domain Adaptation with Optimal Transport -- TSP: Learning Task-Speci_c Pivots for Unsupervised Domain Adaptation -- Unsupervised and Semisupervised Learning -- k2-means for fast and accurate large scale clustering -- A Simple Exponential Family Framework for Zero-Shot Learning -- DeepCluster: A General Clustering Framework based on Deep Learning -- Multi-view Spectral Clustering on Conflicting Views -- Pivot-based Distributed K-Nearest Neighbor Mining. En línea: https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Link: https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i

