Información del autor
Autor Tallón-Ballesteros, Antonio J. |
Documentos disponibles escritos por este autor (6)
Crear una solicitud de compra Refinar búsqueda
Intelligent Data Engineering and Automated Learning – IDEAL 2017 / Yin, Hujun ; Gao, Yang ; Chen, Songcan ; Wen, Yimin ; Cai, Guoyong ; Gu, Tianlong ; Du, Junping ; Tallón-Ballesteros, Antonio J. ; Zhang, Minling
TÃtulo : Intelligent Data Engineering and Automated Learning – IDEAL 2017 : 18th International Conference, Guilin, China, October 30 – November 1, 2017, Proceedings / Tipo de documento: documento electrónico Autores: Yin, Hujun, ; Gao, Yang, ; Chen, Songcan, ; Wen, Yimin, ; Cai, Guoyong, ; Gu, Tianlong, ; Du, Junping, ; Tallón-Ballesteros, Antonio J., ; Zhang, Minling, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2017 Número de páginas: XVI, 609 p. 198 ilustraciones ISBN/ISSN/DL: 978-3-319-68935-7 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Algoritmo Information storage and retrieval Inteligencia artificial Reconocimiento de patrones automatizado MinerÃa de datos y descubrimiento de conocimientos Sistemas de almacenamiento y recuperación de información. TeorÃa de la Computación Sistemas de reconocimiento de patrones Procesamiento de datos Informática Clasificación: 6.312 Resumen: Este libro constituye las actas arbitradas de la 18.ª Conferencia internacional sobre ingenierÃa de datos inteligentes y aprendizaje automático, IDEAL 2017, celebrada en Guilin (China) en octubre/noviembre de 2017. Los 65 trabajos completos presentados fueron cuidadosamente revisados ​​y seleccionados entre 110 presentaciones. Estos trabajos proporcionaron una muestra de los últimos resultados de la investigación en ingenierÃa de datos y aprendizaje automático, desde metodologÃas, marcos y técnicas hasta aplicaciones. Además de varios temas como algoritmos evolutivos, redes neuronales de aprendizaje profundo, modelado probabilÃstico, inteligencia de enjambre de partÃculas, análisis de big data y aplicaciones en reconocimiento de imágenes, regresión, clasificación, agrupamiento, modelado y predicción médica y biológica, procesamiento de texto y análisis de redes sociales. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 18th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2017, held in Guilin, China, in October/November 2017. The 65 full papers presented were carefully reviewed and selected from 110 submissions. These papers provided a sample of latest research outcomes in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2017 : 18th International Conference, Guilin, China, October 30 – November 1, 2017, Proceedings / [documento electrónico] / Yin, Hujun, ; Gao, Yang, ; Chen, Songcan, ; Wen, Yimin, ; Cai, Guoyong, ; Gu, Tianlong, ; Du, Junping, ; Tallón-Ballesteros, Antonio J., ; Zhang, Minling, . - 1 ed. . - [s.l.] : Springer, 2017 . - XVI, 609 p. 198 ilustraciones.
ISBN : 978-3-319-68935-7
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Algoritmo Information storage and retrieval Inteligencia artificial Reconocimiento de patrones automatizado MinerÃa de datos y descubrimiento de conocimientos Sistemas de almacenamiento y recuperación de información. TeorÃa de la Computación Sistemas de reconocimiento de patrones Procesamiento de datos Informática Clasificación: 6.312 Resumen: Este libro constituye las actas arbitradas de la 18.ª Conferencia internacional sobre ingenierÃa de datos inteligentes y aprendizaje automático, IDEAL 2017, celebrada en Guilin (China) en octubre/noviembre de 2017. Los 65 trabajos completos presentados fueron cuidadosamente revisados ​​y seleccionados entre 110 presentaciones. Estos trabajos proporcionaron una muestra de los últimos resultados de la investigación en ingenierÃa de datos y aprendizaje automático, desde metodologÃas, marcos y técnicas hasta aplicaciones. Además de varios temas como algoritmos evolutivos, redes neuronales de aprendizaje profundo, modelado probabilÃstico, inteligencia de enjambre de partÃculas, análisis de big data y aplicaciones en reconocimiento de imágenes, regresión, clasificación, agrupamiento, modelado y predicción médica y biológica, procesamiento de texto y análisis de redes sociales. Tipo de medio : Computadora Summary : This book constitutes the refereed proceedings of the 18th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2017, held in Guilin, China, in October/November 2017. The 65 full papers presented were carefully reviewed and selected from 110 submissions. These papers provided a sample of latest research outcomes in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2018 / Yin, Hujun ; Camacho, David ; Novais, Paulo ; Tallón-Ballesteros, Antonio J.
TÃtulo : Intelligent Data Engineering and Automated Learning – IDEAL 2018 : 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part I / Tipo de documento: documento electrónico Autores: Yin, Hujun, ; Camacho, David, ; Novais, Paulo, ; Tallón-Ballesteros, Antonio J., Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2018 Número de páginas: XXVI, 865 p. 285 ilustraciones, 197 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-03493-1 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Informática Visión TeorÃa de la Computación MinerÃa de datos y descubrimiento de conocimientos Procesamiento de imágenes Inteligencia artificial Procesamiento de datos Visión por computador Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes LNCS 11314 y 11315 constituye las actas de la 19.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2018, celebrada en Madrid, España, en noviembre de 2018. Los 125 artÃculos completos presentados fueron cuidadosamente revisados ​​y seleccionado entre 204 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automatizado, desde metodologÃas, marcos y técnicas hasta aplicaciones. Además de diversos temas como algoritmos evolutivos, redes neuronales de aprendizaje profundo, modelado probabilÃstico, inteligencia de enjambres de partÃculas, análisis de big data y aplicaciones en reconocimiento de imágenes, regresión, clasificación, agrupamiento, modelado y predicción médicos y biológicos, procesamiento de textos y redes sociales. análisis. Nota de contenido: Intelligent data analysis -- data mining and their associated learning systems and paradigms -- big data challenges -- machine learning, data mining, information retrieval and management -- bio- and neuro-informatics -- bio-inspired models including neural networks, evolutionary computation and swarm intelligence -- agents and hybrid intelligent systems, and real-world applications of intelligent techniques -- evolutionary algorithms -- deep learning neural networks -- probabilistic modeling -- particle swarm intelligence -- big data analytics and applications in image recognition -- regression, classification, clustering, medical and biological modelling and prediction -- text processing and social media analysis. Tipo de medio : Computadora Summary : This two-volume set LNCS 11314 and 11315 constitutes the thoroughly refereed conference proceedings of the 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, held in Madrid, Spain, in November 2018. The 125 full papers presented were carefully reviewed and selected from 204 submissions. These papers provided a timely sample of the latest advances in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2018 : 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part I / [documento electrónico] / Yin, Hujun, ; Camacho, David, ; Novais, Paulo, ; Tallón-Ballesteros, Antonio J., . - 1 ed. . - [s.l.] : Springer, 2018 . - XXVI, 865 p. 285 ilustraciones, 197 ilustraciones en color.
ISBN : 978-3-030-03493-1
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Informática Visión TeorÃa de la Computación MinerÃa de datos y descubrimiento de conocimientos Procesamiento de imágenes Inteligencia artificial Procesamiento de datos Visión por computador Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes LNCS 11314 y 11315 constituye las actas de la 19.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2018, celebrada en Madrid, España, en noviembre de 2018. Los 125 artÃculos completos presentados fueron cuidadosamente revisados ​​y seleccionado entre 204 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automatizado, desde metodologÃas, marcos y técnicas hasta aplicaciones. Además de diversos temas como algoritmos evolutivos, redes neuronales de aprendizaje profundo, modelado probabilÃstico, inteligencia de enjambres de partÃculas, análisis de big data y aplicaciones en reconocimiento de imágenes, regresión, clasificación, agrupamiento, modelado y predicción médicos y biológicos, procesamiento de textos y redes sociales. análisis. Nota de contenido: Intelligent data analysis -- data mining and their associated learning systems and paradigms -- big data challenges -- machine learning, data mining, information retrieval and management -- bio- and neuro-informatics -- bio-inspired models including neural networks, evolutionary computation and swarm intelligence -- agents and hybrid intelligent systems, and real-world applications of intelligent techniques -- evolutionary algorithms -- deep learning neural networks -- probabilistic modeling -- particle swarm intelligence -- big data analytics and applications in image recognition -- regression, classification, clustering, medical and biological modelling and prediction -- text processing and social media analysis. Tipo de medio : Computadora Summary : This two-volume set LNCS 11314 and 11315 constitutes the thoroughly refereed conference proceedings of the 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, held in Madrid, Spain, in November 2018. The 125 full papers presented were carefully reviewed and selected from 204 submissions. These papers provided a timely sample of the latest advances in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2018 / Yin, Hujun ; Camacho, David ; Novais, Paulo ; Tallón-Ballesteros, Antonio J.
TÃtulo : Intelligent Data Engineering and Automated Learning – IDEAL 2018 : 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part II / Tipo de documento: documento electrónico Autores: Yin, Hujun, ; Camacho, David, ; Novais, Paulo, ; Tallón-Ballesteros, Antonio J., Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2018 Número de páginas: XXVI, 349 p. 96 ilustraciones, 62 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-03496-2 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Inteligencia artificial Procesamiento del lenguaje natural (PNL) IngenierÃa Informática y Redes Red informática IngenierÃa Informática Procesamiento del lenguaje natural (Informática) Procesamiento de datos Application software Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes LNCS 11314 y 11315 constituye las actas de la 19.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2018, celebrada en Madrid, España, en noviembre de 2018. Los 125 artÃculos completos presentados fueron cuidadosamente revisados ​​y seleccionado entre 204 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automatizado, desde metodologÃas, marcos y técnicas hasta aplicaciones. Además de diversos temas como algoritmos evolutivos, redes neuronales de aprendizaje profundo, modelado probabilÃstico, inteligencia de enjambres de partÃculas, análisis de big data y aplicaciones en reconocimiento de imágenes, regresión, clasificación, agrupamiento, modelado y predicción médicos y biológicos, procesamiento de textos y redes sociales. análisis. Tipo de medio : Computadora Summary : This two-volume set LNCS 11314 and 11315 constitutes the thoroughly refereed conference proceedings of the 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, held in Madrid, Spain, in November 2018. The 125 full papers presented were carefully reviewed and selected from 204 submissions. These papers provided a timely sample of the latest advances in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2018 : 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part II / [documento electrónico] / Yin, Hujun, ; Camacho, David, ; Novais, Paulo, ; Tallón-Ballesteros, Antonio J., . - 1 ed. . - [s.l.] : Springer, 2018 . - XXVI, 349 p. 96 ilustraciones, 62 ilustraciones en color.
ISBN : 978-3-030-03496-2
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: MinerÃa de datos y descubrimiento de conocimientos Aplicaciones informáticas y de sistemas de información Inteligencia artificial Procesamiento del lenguaje natural (PNL) IngenierÃa Informática y Redes Red informática IngenierÃa Informática Procesamiento del lenguaje natural (Informática) Procesamiento de datos Application software Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes LNCS 11314 y 11315 constituye las actas de la 19.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2018, celebrada en Madrid, España, en noviembre de 2018. Los 125 artÃculos completos presentados fueron cuidadosamente revisados ​​y seleccionado entre 204 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automatizado, desde metodologÃas, marcos y técnicas hasta aplicaciones. Además de diversos temas como algoritmos evolutivos, redes neuronales de aprendizaje profundo, modelado probabilÃstico, inteligencia de enjambres de partÃculas, análisis de big data y aplicaciones en reconocimiento de imágenes, regresión, clasificación, agrupamiento, modelado y predicción médicos y biológicos, procesamiento de textos y redes sociales. análisis. Tipo de medio : Computadora Summary : This two-volume set LNCS 11314 and 11315 constitutes the thoroughly refereed conference proceedings of the 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, held in Madrid, Spain, in November 2018. The 125 full papers presented were carefully reviewed and selected from 204 submissions. These papers provided a timely sample of the latest advances in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2019 / Yin, Hujun ; Camacho, David ; Tino, Peter ; Tallón-Ballesteros, Antonio J. ; Menezes, Ronaldo ; Allmendinger, Richard
TÃtulo : Intelligent Data Engineering and Automated Learning – IDEAL 2019 : 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I / Tipo de documento: documento electrónico Autores: Yin, Hujun, ; Camacho, David, ; Tino, Peter, ; Tallón-Ballesteros, Antonio J., ; Menezes, Ronaldo, ; Allmendinger, Richard, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XXII, 554 p. 213 ilustraciones, 141 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-33607-3 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia artificial IngenierÃa Informática y Redes Aplicaciones informáticas y de sistemas de información TeorÃa de la Computación Computadoras y Educación MinerÃa de datos y descubrimiento de conocimientos IngenierÃa Informática Application software Informática Procesamiento de datos Red informática Educación Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes de LNCS 11871 y 11872 constituye las actas de la 20.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2019, celebrada en Manchester, Reino Unido, en noviembre de 2019. Los 94 artÃculos completos presentados fueron cuidadosamente revisados. y seleccionado entre 149 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automático, desde metodologÃas, marcos y algoritmos hasta aplicaciones. Los temas centrales de IDEAL 2019 incluyen desafÃos de big data, aprendizaje automático, minerÃa de datos, recuperación y gestión de información, bioinformática/neuroinformática, modelos bioinspirados (incluidas redes neuronales, computación evolutiva e inteligencia de enjambre), agentes y sistemas inteligentes hÃbridos. , aplicaciones del mundo real de técnicas inteligentes e IA. Nota de contenido: Orchids Classification Using Spatial Transformer Network with Adaptive Scaling -- Scalable Dictionary Classifiers for Time Series Classification -- Optimization of the numeric and categorical attribute weights in KAMILA mixed data clustering algorithm -- Meaningful Data Sampling for a Faithful Local Explanation Method -- Classifying Prostate Histological Images Using Deep Gaussian Processes on a New Optical Density Granulometry-Based Descriptor -- Adaptive Orthogonal Characteristics of Bio-inspired Neural Networks -- Using Deep Learning for Ordinal Classification of Mobile Marketing User Conversion -- Modeling Data Driven Interactions on Property Graph -- Adaptive Dimensionality Adjustment for Online "Principal Component Analysis" -- Relevance Metric for Counterfactuals Selection in Decision Trees -- Weighted Nearest Centroid Neighbourhood -- The Prevalence of Errors in Machine Learning Experiments -- A Hybrid Model for Fraud Detection on Purchase Orders -- Users Intention based on Twitter Features using Text Analytics -- Mixing hetero- and homogeneous models in weighted ensembles -- A Hybrid Approach to Time Series Classification with Shapelets -- An Ensemble Algorithm Based on Deep Learning for Tuberculosis Classification -- A Data-driven Approach to Automatic Extraction of Professional Figure Profiles from Résumés -- Retrieving and Processing Information from Clinical Algorithm via Formal Concept Analysis -- Comparative Analysis of Approaches to Building Medical Dialog Systems in Russian -- Tracking Position and Status of Electric Control Switches Based on YOLO Detector -- A Self-Generating Prototype method based on Information Entropy used for Condensing Data in Classification Tasks -- Transfer Knowledge between Sub-regions for Traffic Prediction using Deep Learning Method -- Global Q-Learning Approach for Power Allocation in Femtocell Networks -- Deep learning and Sensor Fusion Methods for Studying Gait Changes under Cognitive Load in Males and Females -- Towards a robotic personaltrainer for the elderly -- Image Quality Constrained GAN for Super-Resolution -- Use Case Prediction using Product Reviews Text Classification -- Convolutional Neural Network for Core Sections Identification in Scientific Research Publications -- Knowledge Inference Through Analysis of Human Activities -- Representation Learning of Knowledge Graphs with Multi-scale Capsule Network -- CNNPSP: Pseudouridine Sites Prediction Based on Deep Learning -- A Multimodal Approach to Image Sentiment Analysis -- Joining Items Clustering and Users Clustering for Evidential Collaborative Filtering -- Conditioned Generative Model via Latent Semantic Controlling for Learning Deep Representation of Data -- Toward A Framework for Seasonal Time Series Forecasting Using Clustering -- An Evidential Imprecise Answer Aggregation Approach based on Worker Clustering -- Combining Machine Learning and Classical Optimization Techniques in Vehicle to Vehicle Communication Network -- Adversarial Edit Attacks for Tree Data -- Non-stationary Noise Cancellation Using Deep Autoencoder based on Adversarial Learning -- A Deep Learning-based Surface Defect Inspection System for Smartphone Glass -- Superlinear Speedup of Parallel Population-based Metaheuristics: A Microservices and Container Virtualization Approach -- Active Dataset Generation for Meta-Learning System Quality Improvement -- Do You Really Follow Them? Automatic Detection of Credulous Twitter Users -- User Localization Based on Call Detail Record -- Automatic Ground Truth Dataset Creation for Fake News Detection in Social Media -- Artificial Flora Optimization Algorithm for Task Scheduling in Cloud Computing Environment -- A Significantly Faster Elastic-Ensemble for Time-Series Classification -- ALIME: Autoencoder Based Approach for Local Interpretability -- Detection of Abnormal Load Consumption in the Power Grid Using Clustering and Statistical Analysis -- Deep Convolutional Neural Networks Based on Image Data Augmentation for Visual Object Recognition -- An Efficient Scheme for Prototyping kNN in the Context of Real-Time Human Activity Recognition -- A Novel Recommendation System for Next Feature in Software -- Meta-learning Based Evolutionary Clustering Algorithm -- Fast tree-based classification via homogeneous clustering -- Ordinal equivalence classes for parallel coordinates -- New Internal Clustering Evaluation Index Based on Line Segments -- Threat Identification in Humanitarian Demining using Machine Learning and Spectroscopic Metal Detection. Tipo de medio : Computadora Summary : This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2019 : 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I / [documento electrónico] / Yin, Hujun, ; Camacho, David, ; Tino, Peter, ; Tallón-Ballesteros, Antonio J., ; Menezes, Ronaldo, ; Allmendinger, Richard, . - 1 ed. . - [s.l.] : Springer, 2019 . - XXII, 554 p. 213 ilustraciones, 141 ilustraciones en color.
ISBN : 978-3-030-33607-3
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia artificial IngenierÃa Informática y Redes Aplicaciones informáticas y de sistemas de información TeorÃa de la Computación Computadoras y Educación MinerÃa de datos y descubrimiento de conocimientos IngenierÃa Informática Application software Informática Procesamiento de datos Red informática Educación Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes de LNCS 11871 y 11872 constituye las actas de la 20.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2019, celebrada en Manchester, Reino Unido, en noviembre de 2019. Los 94 artÃculos completos presentados fueron cuidadosamente revisados. y seleccionado entre 149 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automático, desde metodologÃas, marcos y algoritmos hasta aplicaciones. Los temas centrales de IDEAL 2019 incluyen desafÃos de big data, aprendizaje automático, minerÃa de datos, recuperación y gestión de información, bioinformática/neuroinformática, modelos bioinspirados (incluidas redes neuronales, computación evolutiva e inteligencia de enjambre), agentes y sistemas inteligentes hÃbridos. , aplicaciones del mundo real de técnicas inteligentes e IA. Nota de contenido: Orchids Classification Using Spatial Transformer Network with Adaptive Scaling -- Scalable Dictionary Classifiers for Time Series Classification -- Optimization of the numeric and categorical attribute weights in KAMILA mixed data clustering algorithm -- Meaningful Data Sampling for a Faithful Local Explanation Method -- Classifying Prostate Histological Images Using Deep Gaussian Processes on a New Optical Density Granulometry-Based Descriptor -- Adaptive Orthogonal Characteristics of Bio-inspired Neural Networks -- Using Deep Learning for Ordinal Classification of Mobile Marketing User Conversion -- Modeling Data Driven Interactions on Property Graph -- Adaptive Dimensionality Adjustment for Online "Principal Component Analysis" -- Relevance Metric for Counterfactuals Selection in Decision Trees -- Weighted Nearest Centroid Neighbourhood -- The Prevalence of Errors in Machine Learning Experiments -- A Hybrid Model for Fraud Detection on Purchase Orders -- Users Intention based on Twitter Features using Text Analytics -- Mixing hetero- and homogeneous models in weighted ensembles -- A Hybrid Approach to Time Series Classification with Shapelets -- An Ensemble Algorithm Based on Deep Learning for Tuberculosis Classification -- A Data-driven Approach to Automatic Extraction of Professional Figure Profiles from Résumés -- Retrieving and Processing Information from Clinical Algorithm via Formal Concept Analysis -- Comparative Analysis of Approaches to Building Medical Dialog Systems in Russian -- Tracking Position and Status of Electric Control Switches Based on YOLO Detector -- A Self-Generating Prototype method based on Information Entropy used for Condensing Data in Classification Tasks -- Transfer Knowledge between Sub-regions for Traffic Prediction using Deep Learning Method -- Global Q-Learning Approach for Power Allocation in Femtocell Networks -- Deep learning and Sensor Fusion Methods for Studying Gait Changes under Cognitive Load in Males and Females -- Towards a robotic personaltrainer for the elderly -- Image Quality Constrained GAN for Super-Resolution -- Use Case Prediction using Product Reviews Text Classification -- Convolutional Neural Network for Core Sections Identification in Scientific Research Publications -- Knowledge Inference Through Analysis of Human Activities -- Representation Learning of Knowledge Graphs with Multi-scale Capsule Network -- CNNPSP: Pseudouridine Sites Prediction Based on Deep Learning -- A Multimodal Approach to Image Sentiment Analysis -- Joining Items Clustering and Users Clustering for Evidential Collaborative Filtering -- Conditioned Generative Model via Latent Semantic Controlling for Learning Deep Representation of Data -- Toward A Framework for Seasonal Time Series Forecasting Using Clustering -- An Evidential Imprecise Answer Aggregation Approach based on Worker Clustering -- Combining Machine Learning and Classical Optimization Techniques in Vehicle to Vehicle Communication Network -- Adversarial Edit Attacks for Tree Data -- Non-stationary Noise Cancellation Using Deep Autoencoder based on Adversarial Learning -- A Deep Learning-based Surface Defect Inspection System for Smartphone Glass -- Superlinear Speedup of Parallel Population-based Metaheuristics: A Microservices and Container Virtualization Approach -- Active Dataset Generation for Meta-Learning System Quality Improvement -- Do You Really Follow Them? Automatic Detection of Credulous Twitter Users -- User Localization Based on Call Detail Record -- Automatic Ground Truth Dataset Creation for Fake News Detection in Social Media -- Artificial Flora Optimization Algorithm for Task Scheduling in Cloud Computing Environment -- A Significantly Faster Elastic-Ensemble for Time-Series Classification -- ALIME: Autoencoder Based Approach for Local Interpretability -- Detection of Abnormal Load Consumption in the Power Grid Using Clustering and Statistical Analysis -- Deep Convolutional Neural Networks Based on Image Data Augmentation for Visual Object Recognition -- An Efficient Scheme for Prototyping kNN in the Context of Real-Time Human Activity Recognition -- A Novel Recommendation System for Next Feature in Software -- Meta-learning Based Evolutionary Clustering Algorithm -- Fast tree-based classification via homogeneous clustering -- Ordinal equivalence classes for parallel coordinates -- New Internal Clustering Evaluation Index Based on Line Segments -- Threat Identification in Humanitarian Demining using Machine Learning and Spectroscopic Metal Detection. Tipo de medio : Computadora Summary : This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2019 / Yin, Hujun ; Camacho, David ; Tino, Peter ; Tallón-Ballesteros, Antonio J. ; Menezes, Ronaldo ; Allmendinger, Richard
TÃtulo : Intelligent Data Engineering and Automated Learning – IDEAL 2019 : 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part II / Tipo de documento: documento electrónico Autores: Yin, Hujun, ; Camacho, David, ; Tino, Peter, ; Tallón-Ballesteros, Antonio J., ; Menezes, Ronaldo, ; Allmendinger, Richard, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2019 Número de páginas: XXI, 364 p. 115 ilustraciones, 86 ilustraciones en color. ISBN/ISSN/DL: 978-3-030-33617-2 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia artificial IngenierÃa Informática y Redes Aplicaciones informáticas y de sistemas de información TeorÃa de la Computación Computadoras y Educación MinerÃa de datos y descubrimiento de conocimientos Red informática IngenierÃa Informática Application software Informática Procesamiento de datos Educación Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes de LNCS 11871 y 11872 constituye las actas de la 20.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2019, celebrada en Manchester, Reino Unido, en noviembre de 2019. Los 94 artÃculos completos presentados fueron cuidadosamente revisados. y seleccionado entre 149 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automático, desde metodologÃas, marcos y algoritmos hasta aplicaciones. Los temas centrales de IDEAL 2019 incluyen desafÃos de big data, aprendizaje automático, minerÃa de datos, recuperación y gestión de información, bioinformática/neuroinformática, modelos bioinspirados (incluidas redes neuronales, computación evolutiva e inteligencia de enjambre), agentes y sistemas inteligentes hÃbridos. , aplicaciones del mundo real de técnicas inteligentes e IA. Nota de contenido: Special Session on Fuzzy Systems and Intelligent Data Analysis -- Computational Generalization in Taxonomies Applied to: (1) Analyze Tendencies of Research and (2) Extend User Audiences -- Unsupervised Initialization of Archetypal Analysis and Proportional Membership Fuzzy Clustering -- Special Session on Machine Learning towards Smarter Multimodal Systems -- Multimodal Web Based Video Annotator with Real-Time Human Pose Estimation -- New Interfaces for Classifying Performance Gestures in Music -- Special Session on Data Selection in Machine Learning -- Classifying Ransomware Using Machine Learning Algorithms -- Artificial Neural Networks in Mathematical Mini-Games for Automatic Students Learning Styles Identification: A First Approach -- The Use of Uniï¬ed Activity Records to Predict Requests Made by Applications for External Services -- Fuzzy Clustering Approach to Data Selection for Computer Usage in Headache Disorders -- Multitemporal Aerial Image Registration Using Semantic Features -- Special Session on Machine Learning in Healthcare -- Brain Tumor Classification Using Principal Component Analysis and Kernel Support Vector Machine -- Modelling survival by machine learning methods in liver transplantation: application to the UNOS dataset -- Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images -- Comparative Analysis for Computer-Based Decision Support: Case Study of Knee Osteoarthritis -- A Clustering-Based Patient Grouper for Burn Care -- A comparative assessment of Feed-Forward and Convolutional Neural Networks for the classification of prostate lesions -- Special Session on Machine Learning in Automatic Control -- A Method based on Filter Bank Common Spatial Pattern for Multiclass Motor Imagery BCI -- Safe Deep Neural Network-driven Autonomous Vehicles Using Software Safety Cages -- Wave and viscous resistance estimation by NN -- Neural controller of UAVs with inertia variations -- Special Session on Financeand Data Mining -- A Metric Framework for quantifying Data Concentration -- Adaptive Machine Learning-Based Stock Prediction using Financial Time Series Technical Indicators -- Special Session on Knowledge Discovery from Data -- Exploiting Online Newspaper Articles Metadata for Profiling City Areas -- Modelling the Social Interactions in Ant Colony Optimization -- An Innovative Deep-Learning Algorithm for Supporting the Approximate Classication of Workloads in Big Data Environments -- Control-flow Business Process Summarization via Activity Contraction -- Classifying Flies Based on Reconstructed Audio Signals -- Studying the Evolution of the 'Circular Economy' Concept using Topic Modelling -- Mining Frequent Distributions in Time Series -- Time Series Display for Knowledge Discovery on Selective Laser Melting Machines -- Special Session on Machine Learning Algorithms for Hard Problems -- Using Prior Knowledge to Facilitate Computational Reading of Arabic Calligraphy -- SMOTE Algorithm Variations in Balancing Data Streams -- Multi-Class Text Complexity Evaluation via Deep Neural Networks -- Imbalance reduction techniques applied to ECG classification problem -- Machine Learning Methods for Fake News Classification -- A genetic-based ensemble learning applied to imbalanced data classification -- The feasibility of deep learning use for adversarial model extraction in the cybersecurity domain. Tipo de medio : Computadora Summary : This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2019 : 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part II / [documento electrónico] / Yin, Hujun, ; Camacho, David, ; Tino, Peter, ; Tallón-Ballesteros, Antonio J., ; Menezes, Ronaldo, ; Allmendinger, Richard, . - 1 ed. . - [s.l.] : Springer, 2019 . - XXI, 364 p. 115 ilustraciones, 86 ilustraciones en color.
ISBN : 978-3-030-33617-2
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia artificial IngenierÃa Informática y Redes Aplicaciones informáticas y de sistemas de información TeorÃa de la Computación Computadoras y Educación MinerÃa de datos y descubrimiento de conocimientos Red informática IngenierÃa Informática Application software Informática Procesamiento de datos Educación Clasificación: 6.312 Resumen: Este conjunto de dos volúmenes de LNCS 11871 y 11872 constituye las actas de la 20.ª Conferencia Internacional sobre IngenierÃa de Datos Inteligentes y Aprendizaje Automatizado, IDEAL 2019, celebrada en Manchester, Reino Unido, en noviembre de 2019. Los 94 artÃculos completos presentados fueron cuidadosamente revisados. y seleccionado entre 149 presentaciones. Estos artÃculos proporcionaron una muestra oportuna de los últimos avances en ingenierÃa de datos y aprendizaje automático, desde metodologÃas, marcos y algoritmos hasta aplicaciones. Los temas centrales de IDEAL 2019 incluyen desafÃos de big data, aprendizaje automático, minerÃa de datos, recuperación y gestión de información, bioinformática/neuroinformática, modelos bioinspirados (incluidas redes neuronales, computación evolutiva e inteligencia de enjambre), agentes y sistemas inteligentes hÃbridos. , aplicaciones del mundo real de técnicas inteligentes e IA. Nota de contenido: Special Session on Fuzzy Systems and Intelligent Data Analysis -- Computational Generalization in Taxonomies Applied to: (1) Analyze Tendencies of Research and (2) Extend User Audiences -- Unsupervised Initialization of Archetypal Analysis and Proportional Membership Fuzzy Clustering -- Special Session on Machine Learning towards Smarter Multimodal Systems -- Multimodal Web Based Video Annotator with Real-Time Human Pose Estimation -- New Interfaces for Classifying Performance Gestures in Music -- Special Session on Data Selection in Machine Learning -- Classifying Ransomware Using Machine Learning Algorithms -- Artificial Neural Networks in Mathematical Mini-Games for Automatic Students Learning Styles Identification: A First Approach -- The Use of Uniï¬ed Activity Records to Predict Requests Made by Applications for External Services -- Fuzzy Clustering Approach to Data Selection for Computer Usage in Headache Disorders -- Multitemporal Aerial Image Registration Using Semantic Features -- Special Session on Machine Learning in Healthcare -- Brain Tumor Classification Using Principal Component Analysis and Kernel Support Vector Machine -- Modelling survival by machine learning methods in liver transplantation: application to the UNOS dataset -- Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images -- Comparative Analysis for Computer-Based Decision Support: Case Study of Knee Osteoarthritis -- A Clustering-Based Patient Grouper for Burn Care -- A comparative assessment of Feed-Forward and Convolutional Neural Networks for the classification of prostate lesions -- Special Session on Machine Learning in Automatic Control -- A Method based on Filter Bank Common Spatial Pattern for Multiclass Motor Imagery BCI -- Safe Deep Neural Network-driven Autonomous Vehicles Using Software Safety Cages -- Wave and viscous resistance estimation by NN -- Neural controller of UAVs with inertia variations -- Special Session on Financeand Data Mining -- A Metric Framework for quantifying Data Concentration -- Adaptive Machine Learning-Based Stock Prediction using Financial Time Series Technical Indicators -- Special Session on Knowledge Discovery from Data -- Exploiting Online Newspaper Articles Metadata for Profiling City Areas -- Modelling the Social Interactions in Ant Colony Optimization -- An Innovative Deep-Learning Algorithm for Supporting the Approximate Classication of Workloads in Big Data Environments -- Control-flow Business Process Summarization via Activity Contraction -- Classifying Flies Based on Reconstructed Audio Signals -- Studying the Evolution of the 'Circular Economy' Concept using Topic Modelling -- Mining Frequent Distributions in Time Series -- Time Series Display for Knowledge Discovery on Selective Laser Melting Machines -- Special Session on Machine Learning Algorithms for Hard Problems -- Using Prior Knowledge to Facilitate Computational Reading of Arabic Calligraphy -- SMOTE Algorithm Variations in Balancing Data Streams -- Multi-Class Text Complexity Evaluation via Deep Neural Networks -- Imbalance reduction techniques applied to ECG classification problem -- Machine Learning Methods for Fake News Classification -- A genetic-based ensemble learning applied to imbalanced data classification -- The feasibility of deep learning use for adversarial model extraction in the cybersecurity domain. Tipo de medio : Computadora Summary : This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Intelligent Data Engineering and Automated Learning – IDEAL 2021 / Yin, Hujun ; Camacho, David ; Tino, Peter ; Allmendinger, Richard ; Tallón-Ballesteros, Antonio J. ; Tang, Ke ; Cho, Sung-Bae ; Novais, Paulo ; Nascimento, Susana
Permalink