Información del autor
Autor Dahlbom, Anders |
Documentos disponibles escritos por este autor (1)
Crear una solicitud de compra Refinar búsqueda
Fuzzy Sets, Rough Sets, Multisets and Clustering / Torra, Vicenç ; Dahlbom, Anders ; Narukawa, Yasuo
TÃtulo : Fuzzy Sets, Rough Sets, Multisets and Clustering Tipo de documento: documento electrónico Autores: Torra, Vicenç, ; Dahlbom, Anders, ; Narukawa, Yasuo, Mención de edición: 1 ed. Editorial: [s.l.] : Springer Fecha de publicación: 2017 Número de páginas: X, 347 p. 40 ilustraciones, 15 ilustraciones en color. ISBN/ISSN/DL: 978-3-319-47557-8 Nota general: Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. Idioma : Inglés (eng) Palabras clave: Inteligencia Computacional Inteligencia artificial Clasificación: 006.3 Resumen: Este libro está dedicado al Prof. Sadaaki Miyamoto y presenta artÃculos de vanguardia en algunas de las áreas en las que contribuyó. Al reunir contribuciones de investigadores lÃderes en este campo, aborda concretamente la agrupación, los conjuntos múltiples, los conjuntos aproximados y los conjuntos difusos, asà como sus aplicaciones en áreas como la toma de decisiones. El libro se divide en cuatro partes, la primera de las cuales se centra en la agrupación y clasificación. La segunda parte pone el foco en multisets, bolsas, bolsas difusas y otras extensiones difusas, mientras que la tercera trata sobre conjuntos aproximados. Para completar la cobertura, la última parte explora conjuntos difusos y la toma de decisiones. Nota de contenido: On this book: clustering, multisets, rough sets and fuzzy sets -- Part 1: Clustering and Classiï¬cation -- Contributions of Fuzzy Concepts to Data Clustering -- Fuzzy Clustering/Co-clustering and Probabilistic Mixture Models-induced Algorithms -- Semi-Supervised Fuzzy c-Means Algorithms by Revising Dissimilarity/Kernel Matrices -- Various Types of Objective-Based Rough Clustering -- On Some Clustering Algorithms Based on Tolerance -- Robust Clustering Algorithms Employing Fuzzy-Possibilistic Product Partition -- Consensus-based agglomerative hierarchical clustering -- Using a reverse engineering type paradigm in clustering. An evolutionary pro-gramming based approach -- On Hesitant Fuzzy Clustering and Clustering of Hesitant Fuzzy Data -- Experiences using Decision Trees for Knowledge Discovery -- Part 2: Bags, Fuzzy Bags, and Some Other Fuzzy Extensions -- L-fuzzy Bags -- A Perspective on Differences between Atanassov's Intuitionistic Fuzzy Sets and Interval-valued Fuzzy Sets -- Part 3: Rough Sets.-Attribute Importance Degrees Corresponding to Several Kinds of Attribute Reduction in the Setting of the Classical Rough Sets -- A Review on Rough Set-based Interrelationship Mining -- Part 4: Fuzzy sets and decision making -- OWA Aggregation of Probability Distributions Using the Probabilistic Exceedance Method -- A dynamic average value-at-risk portfolio model with fuzzy random variables -- Group Decision Making: Consensus Approaches based on Soft Consensus Measures -- Construction of capacities from overlap indexes -- Clustering alternatives and learning preferences based on decision attitudes and weighted overlap dominance. Tipo de medio : Computadora Summary : This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] Fuzzy Sets, Rough Sets, Multisets and Clustering [documento electrónico] / Torra, Vicenç, ; Dahlbom, Anders, ; Narukawa, Yasuo, . - 1 ed. . - [s.l.] : Springer, 2017 . - X, 347 p. 40 ilustraciones, 15 ilustraciones en color.
ISBN : 978-3-319-47557-8
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
Idioma : Inglés (eng)
Palabras clave: Inteligencia Computacional Inteligencia artificial Clasificación: 006.3 Resumen: Este libro está dedicado al Prof. Sadaaki Miyamoto y presenta artÃculos de vanguardia en algunas de las áreas en las que contribuyó. Al reunir contribuciones de investigadores lÃderes en este campo, aborda concretamente la agrupación, los conjuntos múltiples, los conjuntos aproximados y los conjuntos difusos, asà como sus aplicaciones en áreas como la toma de decisiones. El libro se divide en cuatro partes, la primera de las cuales se centra en la agrupación y clasificación. La segunda parte pone el foco en multisets, bolsas, bolsas difusas y otras extensiones difusas, mientras que la tercera trata sobre conjuntos aproximados. Para completar la cobertura, la última parte explora conjuntos difusos y la toma de decisiones. Nota de contenido: On this book: clustering, multisets, rough sets and fuzzy sets -- Part 1: Clustering and Classiï¬cation -- Contributions of Fuzzy Concepts to Data Clustering -- Fuzzy Clustering/Co-clustering and Probabilistic Mixture Models-induced Algorithms -- Semi-Supervised Fuzzy c-Means Algorithms by Revising Dissimilarity/Kernel Matrices -- Various Types of Objective-Based Rough Clustering -- On Some Clustering Algorithms Based on Tolerance -- Robust Clustering Algorithms Employing Fuzzy-Possibilistic Product Partition -- Consensus-based agglomerative hierarchical clustering -- Using a reverse engineering type paradigm in clustering. An evolutionary pro-gramming based approach -- On Hesitant Fuzzy Clustering and Clustering of Hesitant Fuzzy Data -- Experiences using Decision Trees for Knowledge Discovery -- Part 2: Bags, Fuzzy Bags, and Some Other Fuzzy Extensions -- L-fuzzy Bags -- A Perspective on Differences between Atanassov's Intuitionistic Fuzzy Sets and Interval-valued Fuzzy Sets -- Part 3: Rough Sets.-Attribute Importance Degrees Corresponding to Several Kinds of Attribute Reduction in the Setting of the Classical Rough Sets -- A Review on Rough Set-based Interrelationship Mining -- Part 4: Fuzzy sets and decision making -- OWA Aggregation of Probability Distributions Using the Probabilistic Exceedance Method -- A dynamic average value-at-risk portfolio model with fuzzy random variables -- Group Decision Making: Consensus Approaches based on Soft Consensus Measures -- Construction of capacities from overlap indexes -- Clustering alternatives and learning preferences based on decision attitudes and weighted overlap dominance. Tipo de medio : Computadora Summary : This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making. Enlace de acceso : https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...]