| Título : |
Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health : Third MICCAI Workshop, DART 2021, and First MICCAI Workshop, FAIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings |
| Tipo de documento: |
documento electrónico |
| Autores: |
Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Dou, Qi, ; Kamnitsas, Konstantinos, ; Khanal, Bishesh, ; Rekik, Islem, ; Rieke, Nicola, ; Sheet, Debdoot, ; Tsaftaris, Sotirios, ; Xu, Daguang, ; Xu, Ziyue, |
| Mención de edición: |
1 ed. |
| Editorial: |
[s.l.] : Springer |
| Fecha de publicación: |
2021 |
| Número de páginas: |
XV, 264 p. 95 ilustraciones, 90 ilustraciones en color. |
| ISBN/ISSN/DL: |
978-3-030-87722-4 |
| Nota general: |
Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos. |
| Palabras clave: |
Visión por computador Inteligencia artificial Bioinformática Informática Médica Biología Computacional y de Sistemas Informática de la Salud |
| Índice Dewey: |
006.37 Visión artificial |
| Resumen: |
Este libro constituye las actas arbitradas del Tercer Taller MICCAI sobre Adaptación de Dominios y Transferencia de Representación, DART 2021, y el Primer Taller MICCAI sobre Atención Médica Asequible e IA para la Salud Global con Diversidad de Recursos, FAIR 2021, celebrado junto con MICCAI 2021, en septiembre/octubre de 2021. Los talleres estaban previstos para realizarse en Estrasburgo, Francia, pero se realizaron de forma virtual debido a la pandemia de COVID-19. DART 2021 aceptó 13 artículos de las 21 presentaciones recibidas. El taller tiene como objetivo crear un foro de debate para comparar, evaluar y discutir los avances metodológicos y las ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en el entorno clínico al hacerlos robustos y consistentes en diferentes dominios. Para FAIR 2021, se aceptaron para su publicación 10 artículos de 17 presentaciones. Se centran en la traducción de imagen a imagen, en particular para entornos de baja dosis o baja resolución; la compacidad y compresión del modelo; Adaptación de dominio y aprendizaje por transferencia; aprendizaje activo, continuo y metaaprendizaje. |
| Nota de contenido: |
Domain Adaptation and Representation Transfer -- A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis -- Self-supervised Multi-scale Consistency for Weakly Supervised Segmentation Learning -- FDA: Feature Decomposition and Aggregation for Robust Airway Segmentation -- Adversarial Continual Learning for Multi-Domain Hippocampal Segmentation -- Self-Supervised Multimodal Generalized Zero Shot Learning For Gleason Grading -- Self-Supervised Learning of Inter-Label Geometric Relationships For Gleason Grade Segmentation -- Stop Throwing Away Discriminators! Re-using Adversaries for Test-Time Training -- Transductive image segmentation: Self-training and effect of uncertainty estimation -- Unsupervised Domain Adaptation with Semantic Consistency across Heterogeneous Modalities for MRI Prostate Lesion Segmentation -- Cohort Bias Adaptation in Federated Datasets for Lesion Segmentation -- Exploring Deep Registration Latent Spaces -- Learning from Partially Overlapping Labels: Image Segmentation under Annotation Shift -- Unsupervised Domain Adaption via Similarity-based Prototypes for Cross-Modality Segmentation -- A ordable AI and Healthcare -- Classification and Generation of Microscopy Images with Plasmodium Falciparum via Arti cial Neural Networks using Low Cost Settings -- Contrast and Resolution Improvement of POCUS Using Self-Consistent CycleGAN -- Low-Dose Dynamic CT Perfusion Denoising without Training Data -- Recurrent Brain Graph Mapper for Predicting Time-Dependent Brain Graph Evaluation Trajectory -- COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep Convolutional Neural Network Design for Detection of COVID-19Patient Cases from Point-of-care Ultrasound Imaging -- Inter-Domain Alignment for Predicting High-Resolution Brain Networks Using Teacher-Student Learning -- Sickle Cell Disease Severity Prediction from Percoll Gradient Images using Graph Convolutional Networks -- Continual Domain Incremental Learning for Chest X-ray Classificationin Low-Resource Clinical Settings -- Deep learning based Automatic detection of adequately positioned mammograms -- Can non-specialists provide high quality Gold standard labels in challenging modalities. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health : Third MICCAI Workshop, DART 2021, and First MICCAI Workshop, FAIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27 and October 1, 2021, Proceedings [documento electrónico] / Albarqouni, Shadi, ; Cardoso, M. Jorge, ; Dou, Qi, ; Kamnitsas, Konstantinos, ; Khanal, Bishesh, ; Rekik, Islem, ; Rieke, Nicola, ; Sheet, Debdoot, ; Tsaftaris, Sotirios, ; Xu, Daguang, ; Xu, Ziyue, . - 1 ed. . - [s.l.] : Springer, 2021 . - XV, 264 p. 95 ilustraciones, 90 ilustraciones en color. ISBN : 978-3-030-87722-4 Libro disponible en la plataforma SpringerLink. Descarga y lectura en formatos PDF, HTML y ePub. Descarga completa o por capítulos.
| Palabras clave: |
Visión por computador Inteligencia artificial Bioinformática Informática Médica Biología Computacional y de Sistemas Informática de la Salud |
| Índice Dewey: |
006.37 Visión artificial |
| Resumen: |
Este libro constituye las actas arbitradas del Tercer Taller MICCAI sobre Adaptación de Dominios y Transferencia de Representación, DART 2021, y el Primer Taller MICCAI sobre Atención Médica Asequible e IA para la Salud Global con Diversidad de Recursos, FAIR 2021, celebrado junto con MICCAI 2021, en septiembre/octubre de 2021. Los talleres estaban previstos para realizarse en Estrasburgo, Francia, pero se realizaron de forma virtual debido a la pandemia de COVID-19. DART 2021 aceptó 13 artículos de las 21 presentaciones recibidas. El taller tiene como objetivo crear un foro de debate para comparar, evaluar y discutir los avances metodológicos y las ideas que pueden mejorar la aplicabilidad de los enfoques de aprendizaje automático (ML)/aprendizaje profundo (DL) en el entorno clínico al hacerlos robustos y consistentes en diferentes dominios. Para FAIR 2021, se aceptaron para su publicación 10 artículos de 17 presentaciones. Se centran en la traducción de imagen a imagen, en particular para entornos de baja dosis o baja resolución; la compacidad y compresión del modelo; Adaptación de dominio y aprendizaje por transferencia; aprendizaje activo, continuo y metaaprendizaje. |
| Nota de contenido: |
Domain Adaptation and Representation Transfer -- A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis -- Self-supervised Multi-scale Consistency for Weakly Supervised Segmentation Learning -- FDA: Feature Decomposition and Aggregation for Robust Airway Segmentation -- Adversarial Continual Learning for Multi-Domain Hippocampal Segmentation -- Self-Supervised Multimodal Generalized Zero Shot Learning For Gleason Grading -- Self-Supervised Learning of Inter-Label Geometric Relationships For Gleason Grade Segmentation -- Stop Throwing Away Discriminators! Re-using Adversaries for Test-Time Training -- Transductive image segmentation: Self-training and effect of uncertainty estimation -- Unsupervised Domain Adaptation with Semantic Consistency across Heterogeneous Modalities for MRI Prostate Lesion Segmentation -- Cohort Bias Adaptation in Federated Datasets for Lesion Segmentation -- Exploring Deep Registration Latent Spaces -- Learning from Partially Overlapping Labels: Image Segmentation under Annotation Shift -- Unsupervised Domain Adaption via Similarity-based Prototypes for Cross-Modality Segmentation -- A ordable AI and Healthcare -- Classification and Generation of Microscopy Images with Plasmodium Falciparum via Arti cial Neural Networks using Low Cost Settings -- Contrast and Resolution Improvement of POCUS Using Self-Consistent CycleGAN -- Low-Dose Dynamic CT Perfusion Denoising without Training Data -- Recurrent Brain Graph Mapper for Predicting Time-Dependent Brain Graph Evaluation Trajectory -- COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep Convolutional Neural Network Design for Detection of COVID-19Patient Cases from Point-of-care Ultrasound Imaging -- Inter-Domain Alignment for Predicting High-Resolution Brain Networks Using Teacher-Student Learning -- Sickle Cell Disease Severity Prediction from Percoll Gradient Images using Graph Convolutional Networks -- Continual Domain Incremental Learning for Chest X-ray Classificationin Low-Resource Clinical Settings -- Deep learning based Automatic detection of adequately positioned mammograms -- Can non-specialists provide high quality Gold standard labels in challenging modalities. |
| En línea: |
https://link-springer-com.biblioproxy.umanizales.edu.co/referencework/10.1007/97 [...] |
| Link: |
https://biblioteca.umanizales.edu.co/ils/opac_css/index.php?lvl=notice_display&i |
|  |